

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Uponor Ecoflex Varia Twin Uponor Corporation

EPD HUB, HUB-2474 Publishing date 12 April 2025, last updated on 12 April 2025, valid until 11 April 2030.

Created with One Click LCA

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Uponor Corporation
Address	Ilmalantori 4, 00240 Helsinki, Finland
Contact details	info@uponor.com
Website	www.uponor.com

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Thomas Vogel
EPD verification	Independent verification of this EPD and data, according to ISO 14025: □ Internal verification ☑ External verification
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Uponor Ecoflex Varia Twin
Additional labels	-
Product reference	-
Place of production	Industriestraße 56, 97437 Hassfurt, Germany
Period for data	2023 (calendar year)
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	-

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	4,07E+00
GWP-total, A1-A3 (kgCO₂e)	4,07E+00
Secondary material, inputs (%)	2,72
Secondary material, outputs (%)	2,93
Total energy use, A1-A3 (kWh)	19,2
Net freshwater use, A1-A3 (m ³)	0,03

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Uponor is rethinking water for future generations. Our offering, including safe drinking water delivery, energy-efficient radiant heating and cooling and reliable infrastructure, enables a more sustainable living environment. We help our customers in residential and commercial construction, municipalities and utilities, as well as different industries to work faster and smarter. We employ about 3,800 professionals in 26 countries in Europe and North America. Over 100 years of expertise and trust form the basis of any successful partnership. This is the basis, on which they can build, in a literal and metaphorical sense. We create trust together with our partners: Customers, prospective customers and suppliers. We establish this with shared knowledge, quality and sustainable results.

PRODUCT DESCRIPTION

Uponor Ecoflex are a portfolio of flexible pre-insulated plastic pipes for heating, cooling and water distribution in the underground.

Ecoflex Varia pipes, certified acc. EN 15632, are for heating and cooling applications with reduced outer diameter requirements.

Ecoflex Varia Twin has supply and return pipes in one jacket. Application:

- Transport of heating and cooling water for underground installations.
- Heating operating temperature 80°C based on EN 15632.
- Malfunction temperature 95°C.

Further information can be found at www.uponor.com

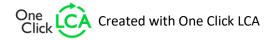
PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	-	-
Minerals	-	-
Fossil materials	100	EU
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0



FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly age			U	ise sta _l	ge			E	nd of I	ife staţ	ge		Beyond the system boundaries			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4		D			
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×		×			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The production method is the pre-insulation of medium polyethylene pipe(s) by wrapping PEX foam layers around the medium pipe(s) and extrude a

corrugated polyethylene casing/ jacket pipe around the last foam layer. The different stages are:

- supporting the media pipe(s) in the machine
- wrapping foam layer(s)
- melting foam layers together
- extruding corrugated jacket pipe
- printing marking on jacket pipe
- cooling jacket pipe
- coiling the pipe
- cutting the pipe
- binding the pipe coil
- packaging and labelling the pipe coil

The finished pipe coil is packed with several layers of stretch foil. The meters of pipes on the coil differs depending on the pipe diameter.

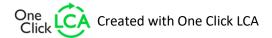
Production waste (melted PE) is sorted and by 50% recycled (non-crosslinked material, mainly the outer corrugated pipe) and 50% incinerated (crosslinked pipe and foam).

Packaging waste in production (packaging materials from incoming raw materials (wooden pallets, cardboard, LDPE-foil) is recycled 100%.

TRANSPORT AND INSTALLATION (A4-A5)

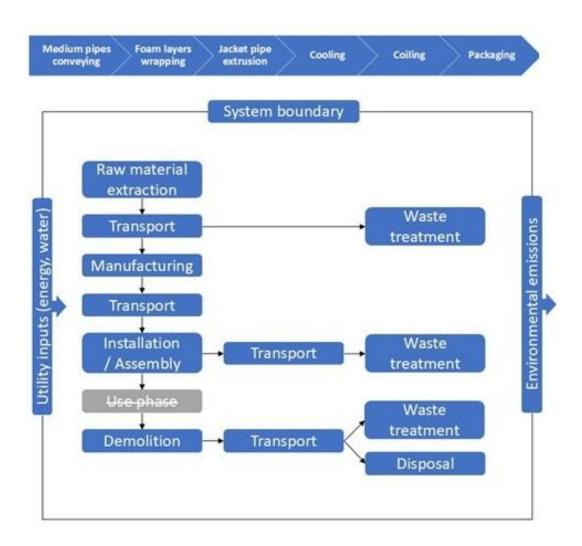
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The transportation distance is defined according to the PCR. The average distance of transportation from the production plant to the installation site is based on the actual sales average figures of the company in the local markets. The installation scenarios in Uponor's infrastructure product EPDs are based on TEPPFA's (The European Plastic Pipe and Fittings Association) industry averaged EPDs. These documents and their background reports include industry consensus estimates of the resource use, emissions and affluents of


typical European installations; these parameters have been used as input for the Uponor EPD modelling. Environmental impacts from installation include standardized energy and installation tools and waste packaging materials . Reference: <u>https://www.teppfa.eu/sustainability/environmental-</u> footprint/epd

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase. Air, soil, and water impacts during the use phase have not been studied.


PRODUCT END OF LIFE (C1-C4, D)

Since the consumption of energy and natural resources is negligible for disassembling of the end-of-life product, the impacts of demolition are assumed negligible (C1). Benefits by recycling of clean and sorted packaguing materiasl collected in installation are calculated as balanced EOL loads/benefits. After ca 100 years of service life 5% of the end-of-life product is assumed to be sent to the closest treatment facilities (C2), adding the load of recycling. The collected 5% from the demolition site is sent to incineration (C3), whereas the remaining 95% is left inert underground (C4).

MANUFACTURING PROCESS AND SYSTEM BOUNDARY

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

uponor

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	-

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
GWP – total ¹⁾	kg CO₂e	3,83E+00	1,47E-01	9,08E-02	4,07E+00	5,89E-01	1,27E-01	MND	1,26E-05	2,35E-04	1,19E-01	6,18E-03	4,55E-18						
GWP – fossil	kg CO ₂ e	3,83E+00	1,47E-01	9,07E-02	4,07E+00	5,88E-01	1,27E-01	MND	1,25E-05	2,35E-04	1,19E-01	6,15E-03	0,00E+00						
GWP – biogenic	kg CO ₂ e	0,00E+00	0,00E+00	6,62E-05	6,62E-05	0,00E+00	-6,62E-05	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
GWP – LULUC	kg CO ₂ e	1,76E-03	5,42E-05	3,40E-05	1,85E-03	2,12E-04	2,32E-05	MND	2,22E-08	8,65E-08	1,01E-06	2,28E-05	0,00E+00						
Ozone depletion pot.	kg CFC-11e	4,49E-08	3,38E-08	8,71E-09	8,74E-08	1,35E-07	2,58E-08	MND	1,25E-12	5,40E-11	2,61E-10	1,54E-09	0,00E+00						
Acidification potential	mol H⁺e	9,81E-03	6,23E-04	2,15E-04	1,06E-02	2,45E-03	1,24E-03	MND	9,55E-08	9,93E-07	2,75E-05	4,54E-05	0,00E+00						
EP-freshwater ²⁾	kg Pe	4,03E-05	1,20E-06	1,27E-06	4,27E-05	1,10E-05	1,35E-06	MND	8,21E-10	1,92E-09	3,12E-08	8,94E-08	0,00E+00						
EP-marine	kg Ne	2,32E-03	1,85E-04	4,62E-05	2,55E-03	7,27E-04	5,42E-04	MND	1,45E-08	2,95E-07	1,28E-05	1,59E-05	0,00E+00						
EP-terrestrial	mol Ne	2,32E-02	2,04E-03	4,95E-04	2,57E-02	8,03E-03	5,85E-03	MND	1,49E-07	3,26E-06	1,32E-04	1,74E-04	0,00E+00						
POCP ("smog") ³)	kg NMVOCe	8,91E-03	6,53E-04	2,07E-04	9,77E-03	2,54E-03	1,62E-03	MND	4,92E-08	1,04E-06	3,20E-05	4,99E-05	0,00E+00						
ADP-minerals & metals ⁴)	kg Sbe	1,27E-05	3,45E-07	5,46E-07	1,36E-05	9,04E-06	1,42E-07	MND	1,14E-09	5,50E-10	1,08E-08	2,15E-08	0,00E+00						
ADP-fossil resources	MJ	9,72E+01	2,21E+00	1,40E+00	1,01E+02	8,92E+00	1,69E+00	MND	1,56E-04	3,52E-03	2,21E-02	1,16E-01	0,00E+00						
Water use ⁵⁾	m³e depr.	8,99E-01	9,88E-03	2,67E-02	9,35E-01	3,51E-02	1,10E-02	MND	1,28E-05	1,58E-05	4,71E-03	6,74E-04	0,00E+00						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Particulate matter	Incidence	1,10E-07	1,69E-08	1,23E-08	1,39E-07	5,49E-08	3,24E-08	MND	8,22E-13	2,70E-11	1,34E-10	8,88E-10	0,00E+00						
Ionizing radiation ⁶⁾	kBq U235e	2,48E-01	1,05E-02	3,11E-03	2,62E-01	4,05E-02	9,03E-03	MND	1,17E-06	1,68E-05	6,79E-05	5,58E-04	0,00E+00						
Ecotoxicity (freshwater)	CTUe	5,30E+01	1,99E+00	7,25E-01	5,57E+01	7,41E+00	1,37E+00	MND	6,29E-04	3,17E-03	2,50E-01	1,02E-01	0,00E+00						
Human toxicity, cancer	CTUh	1,27E-09	4,88E-11	1,04E-10	1,42E-09	1,97E-10	7,87E-11	MND	1,66E-14	7,79E-14	1,06E-11	4,01E-12	0,00E+00						
Human tox. non-cancer	CTUh	4,17E-08	1,97E-09	9,16E-10	4,46E-08	7,97E-09	9,41E-10	MND	7,39E-13	3,14E-12	4,04E-10	7,81E-11	0,00E+00						
SQP ⁷⁾	-	3,49E+00	2,54E+00	2,83E-01	6,32E+00	1,01E+01	2,67E-01	MND	4,98E-05	4,06E-03	7,43E-03	2,17E-01	0,00E+00						

6) EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,19E+01	2,49E-02	1,65E+00	1,36E+01	1,16E-01	2,67E-02	MND	4,11E-04	3,97E-05	8,65E-04	2,19E-03	-6,51E-19						
Renew. PER as material	MJ	3,27E-01	0,00E+00	0,00E+00	3,27E-01	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	-1,63E-02	-3,10E-01	0,00E+00						
Total use of renew. PER	MJ	1,22E+01	2,49E-02	1,65E+00	1,39E+01	1,16E-01	2,67E-02	MND	4,11E-04	3,97E-05	-1,55E-02	-3,08E-01	-6,51E-19						
Non-re. PER as energy	MJ	5,22E+01	2,21E+00	1,02E+00	5,54E+01	8,92E+00	1,69E+00	MND	1,56E-04	3,52E-03	2,21E-02	1,16E-01	9,54E-18						
Non-re. PER as material	MJ	4,85E+01	0,00E+00	3,79E-01	4,89E+01	0,00E+00	-3,79E-01	MND	0,00E+00	0,00E+00	-2,42E+00	-4,61E+01	0,00E+00						
Total use of non-re. PER	MJ	1,01E+02	2,21E+00	1,40E+00	1,04E+02	8,92E+00	1,31E+00	MND	1,56E-04	3,52E-03	-2,40E+00	-4,59E+01	9,54E-18						
Secondary materials	kg	2,72E-02	6,13E-04	3,00E-02	5,78E-02	1,04E-03	1,54E-03	MND	2,05E-07	9,78E-07	1,97E-05	4,77E-05	-4,97E-19						
Renew. secondary fuels	MJ	4,31E-04	6,19E-06	3,17E-04	7,54E-04	1,05E-05	5,87E-06	MND	6,63E-09	9,87E-09	6,94E-07	1,20E-06	4,96E-23						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	2,92E-02	2,86E-04	6,32E-04	3,02E-02	1,47E-03	2,33E-04	MND	3,12E-07	4,56E-07	1,76E-04	8,53E-05	8,47E-22						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Hazardous waste	kg	5,03E-02	2,93E-03	3,70E-03	5,69E-02	1,04E-02	4,31E-03	MND	1,76E-06	4,67E-06	0,00E+00	2,36E-04	0,00E+00						
Non-hazardous waste	kg	1,66E+00	4,81E-02	6,55E-02	1,78E+00	5,29E-01	4,03E-02	MND	3,10E-05	7,68E-05	5,00E-02	3,04E-01	0,00E+00						
Radioactive waste	kg	1,34E-03	1,48E-05	1,14E-06	1,35E-03	6,04E-05	1,14E-05	MND	4,05E-10	2,36E-08	0,00E+00	7,24E-07	0,00E+00						

END OF LIFE – OUTPUT FLOWS

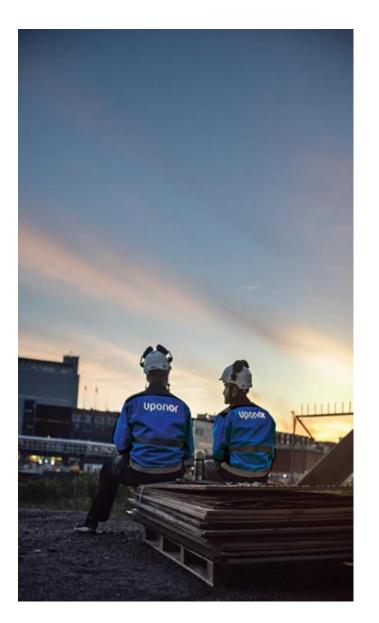
Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	5,59E-02	0,00E+00	7,05E-02	1,26E-01	0,00E+00	8,88E-03	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	6,48E-03	6,48E-03	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	5,00E-02	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	3,71E+00	1,46E-01	9,20E-02	3,95E+00	5,83E-01	1,25E-01	MND	1,22E-05	2,32E-04	1,19E-01	6,09E-03	0,00E+00						
Ozone depletion Pot.	kg CFC-11e	3,84E-08	2,68E-08	7,34E-09	7,26E-08	1,07E-07	2,05E-08	MND	1,16E-12	4,27E-11	2,35E-10	1,22E-09	0,00E+00						
Acidification	kg SO₂e	8,00E-03	4,84E-04	1,75E-04	8,66E-03	1,51E-03	8,87E-04	MND	8,06E-08	7,72E-07	1,96E-05	3,43E-05	0,00E+00						
Eutrophication	kg PO₄³e	1,92E-03	1,10E-04	3,85E-04	2,42E-03	3,31E-04	2,29E-04	MND	3,28E-08	1,76E-07	1,42E-05	1,01E-05	0,00E+00						
POCP ("smog")	$kg \ C_2 H_4 e$	8,47E-04	1,89E-05	2,82E-05	8,94E-04	7,67E-05	2,20E-05	MND	4,08E-09	3,01E-08	4,23E-07	1,32E-06	0,00E+00						
ADP-elements	kg Sbe	1,27E-05	3,34E-07	5,41E-07	1,36E-05	9,03E-06	1,40E-07	MND	1,13E-09	5,33E-10	8,38E-09	2,09E-08	0,00E+00						
ADP-fossil	MJ	9,72E+01	2,21E+00	1,40E+00	1,01E+02	8,92E+00	1,69E+00	MND	1,56E-04	3,52E-03	2,21E-02	1,16E-01	0,00E+00						

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
GWP-GHG ⁹⁾	kg CO₂e	3,83E+00	1,47E-01	9,07E-02	4,07E+00	5,89E-01	1,27E-01	MND	1,26E-05	2,35E-04	1,19E-01	6,18E-03	0,00E+00						


9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

ENVIRONMENTAL IMPACTS – BEPALINGSMETHODE, NETHERLANDS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Shadow price	€	2,50E-01	1,93E-02	8,10E-02	3,50E-01	6,83E-02	2,09E-02	MND	4,78E-06	3,08E-05	7,52E-03	1,05E-03	0,00E+00						
Terrestrial ecotoxicity	DCB eq	2,05E-04	4,29E-04	1,05E-03	1,68E-03	1,22E-03	2,47E-04	MND	1,01E-07	6,84E-07	2,28E-04	2,00E-05	0,00E+00						
Seawater ecotoxicity	DCB eq	1,96E+01	2,27E+01	1,90E+01	6,13E+01	8,07E+01	1,24E+01	MND	1,23E-02	3,63E-02	5,22E+00	1,31E+00	0,00E+00						
Freshwater ecotoxicity	DCB eq	5,94E-04	2,53E-03	3,57E-03	6,69E-03	8,12E-03	1,33E-03	MND	2,48E-07	4,03E-06	8,53E-04	1,02E-04	0,00E+00						
Human ecotoxicity	DCB eq	4,50E-02	7,21E-02	7,78E-01	8,95E-01	2,32E-01	8,40E-02	MND	2,55E-05	1,15E-04	8,96E-03	4,17E-03	0,00E+00						
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
ADP Fossil Fuels	kg Sbe	4,68E-02	1,06E-03	6,73E-04	4,85E-02	4,29E-03	8,14E-04	MND	7,48E-08	1,69E-06	1,06E-05	5,58E-05	0,00E+00						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

12.04.2025

