

Uponor MLC tap water and heating

EN Technical information

Table of contents

1	Uponor MLC Tap water and heating	. 4	8	Pipe network calculations according to DIN 1988-300	40
1.1	System description	4	8.1	General information	40
1.2	Component overview - pipes		8.2	Planning reliability with Uponor HSE	
1.3	Component overview - jointing technology		8.3	Data for pipe network calculations	
1.4	Component overview - tools		0.0		
			9	Leak test, initial filling and commisioning	47
2	Uponor composite pipes	. 7			
			9.1	Pressure and leak testing	
2.1	Uponor Uni Pipe PLUS		9.2	Flushing of Uponor drinking water distribution	48
2.2	Uponor MLC pipe				
2.3	Temperature ranges				
2.4	Insulated Uponor composite pipes	. 8	10	Handover and documentation	. 49
3	Jointing technology for Uponor composite pipes	10	11	Heating installation	50
3.1	Fitting systems - overview	10	11.1	System description	50
3.2	Uponor S-Press PLUS - a new generation of fittings	11	11.2	Uponor main components for heating (overview)	
3.3	Uponor S-Press PLUS - design	12	11.3	Planning principles for heating installation	
3.4	Uponor S-Press PLUS - fitting/tool combinations	13	11.4	Examples of radiator connections	
3.5	Uponor S-Press PLUS - fitting assembly		11.5	Data for pipe network calculations	
3.6	Uponor S-Press PPSU fittings up to 75 mm			··· · · · · · · · · · · · · · · · · ·	
3.7	Other fittings for Uponor composite pipes				
	3 1 1 1		12	Pressure and leak testing of Uponor heating	
				installations	91
4	Drinking water distribution	22			
			12.1	Leak test for heating installations with water	91
4.1	System description	22	12.2	Leak test for heating installation with compressed air or	
4.2	The tap water connection system from Uponor		12.2	inert gas	Q1
4.3	Main tap water components				. 01
			13	General planning principles	92
5	Uponor Smatrix Aqua PLUS	27			
			13.1	Fire protection requirements	92
5.1	System description		13.2	Pipe insulation	92
5.2	Uponor Smatrix Aqua PLUS flushing unit				
5.3	Function description	29			
			14	Pressing tools for fitting assembly	93
6	Hot water generation	30	14.1	System description	93
			14.2	Uponor pressing tool concept	
6.1	Uponor decentralised heat interface units	30	14.3	Overview tools for fitting assembly	
6.2	Comparing a 2- and 4-pipe system		14.4	List of recommendations	96
6.3	General technical information	32			
6.4	Main operating principles				
6.5	Variants of Uponor heat interface units	34	15	General processing instructions	98
			15.1	Installation instructions	98
7	Planning principles for water distribution	35	15.2	Installation according to Z dimension	
			15.3	Consideration of thermal length expansion	99
7.1	General information	35	15.4	Cellar distribution and riser pipes	100
7.2	Installation variants		15.5	Determination of the bending leg length	
7.3	Circulation systems	37	15.6	Bending Uponor composite pipes	101
7.4	Use of trace heating	38	15.7	Fixation distances	
7.5	Connections		15.8	Pipeline laying on the raw floor	
7.6	Moisture protection	38	15.9	Installation under mastic asphalt	103

8	Pipe network calculations according to DIN 1988-300	40
8.1	General information	40
8.2	Planning reliability with Uponor HSE	
8.3	Data for pipe network calculations	41
9	Leak test, initial filling and commisioning	47
9.1	Pressure and leak testing	47
9.2	Flushing of Uponor drinking water distribution	
9.2		40
10	Handover and documentation	49
11	Heating installation	50
11.1	System description	50
11.2	Uponor main components for heating (overview)	
11.3	Planning principles for heating installation	
11.4	Examples of radiator connections	
11.5	Data for pipe network calculations	
11.0		00
12	Pressure and leak testing of Uponor heating	
	installations	91
12.1	Leak test for heating installations with water	91
12.2	Leak test for heating installation with compressed air or	
	inert gas	91
13	General planning principles	92
13.1	Fire protection requirements	92
13.2	Pipe insulation	
14	Pressing tools for fitting assembly	93
14.1	System description	93
14.2	Uponor pressing tool concept	94
14.3	Overview tools for fitting assembly	95
14.4	List of recommendations	96
15	General processing instructions	9 8
15.1	Installation instructions	98
15.2	Installation according to Z dimension	
15.3	Consideration of thermal length expansion	
15.4	Cellar distribution and riser pipes	
15.5	Determination of the bending leg length 1	
15.6	Bending Uponor composite pipes	
15.7	Fixation distances	
15.8	Pipeline laying on the raw floor 1	

16	Transport, storage and processing conditions	105
16.1 16.2 16.3 16.4 16.5	General information Processing temperatures Uponor composite pipes Uponor fittings Installation in the ground and outdoors	105 105 105
17	System compatibility	106
17.1	Transitions from Unipipe old installations	106
18	Calculation/assembly times	107
18.1 18.2	Assembly time per running meter or fitting Assembly time per modular Uponor RS fitting	
19	Risk of mixed installation	108
19.1	Installation configurations	108

1 Uponor MLC Tap water and heating

1.1 System description

Note

This publication includes information (text and images) about products that may not be available in all markets.

For detailed information on the range of components in each local market, see the price lists.

Whether drinking water distribution or radiator connection – the Uponor composite pipe system is the perfect solution. The complete programme enables the complete installation from the riser to the consumer. Installation is particularly simple and economical. The core components of the system, the Uponor composite pipe and its associated fittings, are developed and manufactured in-house and are therefore perfectly matched to one another. Due to the form stability of the pipe and its low linear expansion, only a few fixing points are required – the practical advantage for reliable, quick installation. The Uponor composite pipe system is rounded off by a sophisticated range of tools.

Uponor composite pipe system

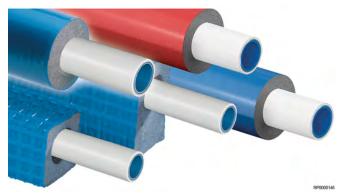
- Pipe dimensions from 14 to 110 mm for any property size
- One pipe many suitable fitting technologies for different installation tasks
- · Form stability and length expansion similar to metal pipes
- Comprehensive quality control during production for maximum safety in the installation
- · Ideal for surface and in-wall mounting
- Comprehensive, practical delivery programme for every installation requirement

1.2 Component overview - pipes

Uponor Uni Pipe PLUS

Absolutely oxygen-diffusion-tight 5-layer composite pipe for drinking water distribution and heating applications

- Seamless aluminium layer using SAC technology
- DVGW approved for drinking water distribution
- Removable hygienic closure according to DIN EN 806
- Minimum bending radii
- · Pipe stiffness optimised for wall surface mounting
- Dimensions 14 32 mm


Uponor MLC composite pipe

Absolutely oxygen-diffusion-tight 5-layer composite pipe for drinking water distribution and heating applications

- Safety-welded aluminium layer
- DVGW approved for drinking water distribution
- Removable hygienic closure according to DIN EN 806
- Dimensions 40 110 mm

Insulated Uponor Uni Pipe PLUS pipes

Uponor composite pipes drawn into thermal insulation at the factory

- Round extruded pipe insulation made of closed cell polyethylene foam and hard-wearing film coating for different insulation requirements
- Pipe insulation S4 in red and blue, for optimum differentiation in the hygienically favoured loop installation.
- Alternatively also available as pre-insulated heating pipes with asymmetrical insulation in accordance with EnEV (German Energy Saving Ordinance)

Uponor Uni Pipe PLUS pipes in conduit

Uponor composite pipes drawn into HDPE protective tubes at the factory

- Colour differentiation between supply and return (red) and heating return (blue)
- Uponor Teck protective tubes are also available separately in blue, red and black

1.3 Component overview - jointing technology

Uponor S-Press PLUS fittings

 $\ensuremath{\mathsf{Press}}$ fitting for Uponor Uni Pipe PLUS composite pipes in tap water and heating installations

- Fitting made of dezincing resistant brass or PPSU
- Flow-efficient design for low zeta values
- · Fixed stainless steel sleeve with press jaw guide
- "Unpressed-untight" test safety
- Foil on stainless steel sleeve with 3-way function: Press indicator, colour coding and printed QR code for additional information
- Dimensions 16 32 mm

Uponor S-Press fittings

 $\ensuremath{\mathsf{Press}}$ fitting for Uponor MLC composite pipes in tap water and heating installations

- Fitting made of brass or PPSU
- Fixed stainless steel sleeve
- "Unpressed-untight" test safety
- Dimension-specific colour coding using coloured stop rings
- Dimensions 14 mm, 40 75 mm

Uponor RTM fittings

Fitting made of PPSU or brass with integrated pressing function, press indicator and colour coding, dimensions 16-25 mm

Uponor RS fitting system

RP0000

Modular fitting system consisting of basic parts and press adapters for distribution and riser pipes 63 - 110 mm.

Uponor S-Press/S-Press PLUS system adapters

Uponor S-Press/S-Press PLUS side with fixed press sleeve, test reliability "unpressed-untight" as well as press indicator and colour coding. Stainless steel/copper side processed according to the specifications of the specific metal system supplier

Uponor Uni

System accessories as well as screw connections and system components with $\frac{1}{2}$ " (Uni-C) or $\frac{3}{4}$ " (Uni-X) threaded connections

1.4 Component overview - tools

Tools for composite pipe processing

Pressing tools and press jaws as well as cutting, bending and calibration tools for processing the Uponor composite pipe system in tap water and heating installations.

2 Uponor composite pipes

2.1 Uponor Uni Pipe PLUS

Uponor Uni Pipe PLUS is the unique composite pipe with no weld seam, which increases fixing distances and reduces the bending radii

by up to 40 % compared to conventional composite pipes – that means fewer pipe fixing points are required during installation and many changes in direction can be achieved with pipe bends. That reduces the number of fittings and pipe clamps required and also saves assembly time.

Uponor Uni Pipe PLUS

- Seamless for maximum safety
- High form stability and minimal expansion
- Improved bending properties
- 100 % oxygen-tight
- Low weight
- Dimensional range 14 32 mm
- Large mounting distances without clips

Technical data and delivery dimensions

Pipe dimension [mm]	14 x 2.0	16 x 2.0	20 x 2.25	25 x 2.5	32 x 3.0
Inner diameter ID [mm]	10	12	15.5	20	26
Coil length [m]	200	10/25/100/120/200/500	25/100/500	50	50
Bar length [m]	-	3/5	3/5	3/5	3/5
Outer diameter of coil [cm]	80	80/80/78/78/80/114	80/80/114	114	114
Weight of coil/bar [g/m]	91/-	111/119	161/171	233/247	364/394
Weight of coil/bar with water at 10 °C [g/m]	170/-	224/232	350/360	547/560	895/926
Weight per coil [kg]	18.2	1.1/2.8/11.1/14.3/23.8/59.5	4/16.1/80.5	11.65	18.2
Weight per bar [kg]	-	0.35/0.59	0.52/0.86	0.74/1.24	1.18/1.97
Water volume [l/m]	0.079	0.113	0.189	0.314	0.531
Pipe roughness k [mm]	0.0004	0.0004	0.0004	0.0004	0.0004
Thermal conductivity λ [W/mK]	0.40	0.40	0.40	0.40	0.40
Coefficient of expansion a [m/mK]	25 x 10⁻ ⁶	25 x 10 ⁻⁶	25 x 10 ⁻⁶	25 x 10 ⁻⁶	25 x 10 ⁻⁶

2.2 Uponor MLC pipe

The Uponor MLC composite pipe is used in particular as distribution and riser pipes in drinking water distribution and heating/cooling applications. Uponor MLC = Multilayer composite pipes are easy to process, corrosion-free and can be used for a variety of installation tasks, even in larger residential and commercial properties.

Uponor MLC

- Safety-welded aluminium layer
- High form stability
- Corrosion-free and sound-proofing
- Fast installation without soldering or welding
- 100 % oxygen-tight
- Dimensional range 40 110 mm

Technical data and delivery dimensions

Pipe dimension [mm]	40 x 4.0	50 x 4.5	63 x 6.0	75 x 7.5	90 x 8.5	110 x 10.0
Inner diameter ID [mm]	32	41	51	60	73	90
Coil length [m]	-	-	-	-	-	-
Bar length [m]	3/5	3/5	3/5	5	5	5
Outer diameter of coil [cm]	-	-	-	-	-	-
Weight of coil/bar [g/m]	-/508	-/745	-/1224	-/1788	-/2545	-/3597
Weight of coil/bar with water at 10 °C [g/m]	-/1310	-/2065	-/3267	-/4615	-/6730	-/9959
Weight per coil [kg]	-	-	-	-	-	-
Weight per bar [kg]	1.52/2.54	2.24/3.73	3.67/6.12	8.94	12.73	17.99
Water volume [l/m]	0.800	1.320	2.040	2.827	4.185	6.362
Pipe roughness k [mm]	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Thermal conductivity λ [W/mK]	0.40	0.40	0.40	0.40	0.40	0.40
Coefficient of expansion a [m/mK]	25 x 10 ⁻⁶	25 x 10 ⁻⁶	25 x 10⁻ ⁶	25 x 10 ⁻⁶	25 x 10 ⁻⁶	25 x 10⁻ ⁶

2.3 Temperature ranges

Tap water: The permissible continuous operating temperature is between 0 and 70 $^{\circ}$ C at a maximum continuous operating pressure of 10 bar. The momentary fault temperature is 95 $^{\circ}$ C for a maximum operating time of 100 hours.

Heating: The permissible maximum continuous operating temperature is 80 °C at a maximum continuous operating pressure of 10 bar. The momentary fault temperature is 100 °C for a maximum operating time of 100 hours.

2.4 Insulated Uponor composite pipes

Uponor composite pipes are also available in conduit or with factory thermal insulation to avoid damage and heat loss.

For better differentiation between cold and warm distribution pipes in series and loop installations Uponor composite pipes are also available insulated with red and blue insulation S4 WLS 040.

Factory insulated Uponor installation pipes offer decisive advantages over pipes insulated on site. On the one hand, they ensure rapid construction progress and at the same time they ensure that the insulation suitable for the specific insulation requirement will be used. The good thermal insulation properties of the insulation materials used allow small outside pipe diameters with optimum thermal insulation. By using asymmetrically insulated heating pipes in the floor structure, the required installation height can also be considerably reduced compared to comparable all-round insulation. This rectangular insulation can also be better integrated into the distribution insulation.

Insulated Uponor composite pipes

- · Seamless or OWC-technology for highest level of safety
- Time savings on site compared to on-site insulation
- Thermal insulation according to EnEV and DVGW requirements
- Robust surface to protect against damage

Preinsulated Uponor Uni Pipe PLUS composite pipes

Insulation class WLS 040

Pipe OD x material thickness [mm]	In all												In asymmetrical insulation, thickness [mm]			
	4	OD ¹⁾	6	OD ¹⁾	9	OD ¹⁾	10	OD ¹⁾	13	OD ¹⁾	9	W x H ²⁾	26	W x H ²⁾		
14 x 2.0	•		•	26												
16 x 2.0	•	24	•	28	•	34			•	42	•	31 x 34	•	38 x 55	•	
20 x 2.25	•	28	•	32	•	38			•	46	•	35 x 38	•	39 x 59	•	
25 x 2.5	•	33	•	37	•	43			•	51					•	
32 x 3.0	•	40			•	50										

1) Outer diameter (OD) [mm]

2) Width x height [mm]

Insulation class WLS 035

Pipe OD x material	In all-round insulation, thickness [mm]											In asymmetrical insulation, thickness [mm]			
thickness [mm]	4	OD ¹⁾	6	OD ¹⁾	9	OD ¹⁾	10	OD ¹⁾	13	OD ¹⁾	9	W x H ²⁾	26	W x H ²⁾	
16 x 2.0			•	28			•	36							
20 x 2.25			•	32			•	40							
25 x 2.5			•	37			•	45							

1) Outer diameter (OD) [mm]

2) Width x height [mm]

3 Jointing technology for Uponor composite pipes

3.1 Fitting systems - overview

Differing installation situations and areas of application demand customised, precisely adapted fitting design concepts. This is why Uponor develops and produces not only pipes, but also the appropriate fitting systems tailored to the respective application. The Uponor fitting range with couplings, elbows, T-joints and a large number of practical system components creates the prerequisites for fast, safe and practical installation and exceeds the requirements placed on hygienic drinking water distribution and modern heating piping.

Overview of the Uponor composite pipe fitting systems

Uponor fitting system		Press fittir	ng, metal			Press fittin composite		RTM fitting	Uni-C ½"	Uni-X ¾"
			-Press S-Press LUS		RS	S-Press PLUS	S-Press			
Colour code/ dimension	Pipe type	Α	В	С	D	E	F	G	Н	1
14	Uni Pipe PLUS		•						•	•
16	Uni Pipe PLUS	•			•	•		•	•	•
20	Uni Pipe PLUS	•			•	•		•	•	•
25	Uni Pipe PLUS	•			•	•		•		•
32	Uni Pipe PLUS	•			•	•				
40	MLC			•	•		•			
50	MLC			•	•		•			
63	MLC			•	•		•			
75	MLC			•	•		•			
90	MLC				•					
110	MLC				•					

Properties

Uponor fitting system	Press fitti	ng, metal			Press fittin composite	0/	RTM fitting	Uni-C ½"	Uni-X ¾"
	S-Press PLUS	S-Press		RS	S-Press PLUS	S-Press			
	Α	В	С	D	E	F	G	Н	1
Dimension-specific colour coding	•	•	•	•	•	•	•		
Inspection window for checking insertion depth	•	•	•	•	•	•	•		

Uponor fitting system	Press fitti	ng, metal			Press fitt composit	U /	RTM fitting	Uni-C 1/2"	Uni-X ¾"
	S-Press PLUS	S-Press		RS	S-Press PLUS	S-Press			
	Α	в	С	D	E	F	G	н	1
Press indicated by detachment of the foil from the press sleeve	•				•				
Press indicated by removal of the stop ring		•		•1)					
Press indicated by press imprint on press sleeve	•		•	•2)	•	•			
Assembly without deburring	•	•		● 1)	•		•	•	•
Mounting without calibration	•	•	•	•	•	•		•	•
Connector unpressed, untight	•	•	•	•	•	•			
Integrated pressing function							•		
Modular fitting system				•					

¹⁾ Up to a dimension of 32 mm

²⁾ Dimension 40 mm and up

3.2 Uponor S-Press PLUS - a new generation of fittings

Sturdy press sleeves made of stainless steel

Stainless steel press sleeves firmly attached to the fitting protect the O-rings from damage and give the finished connection high pull-out and bending resistance.

High-quality materials

Fittings made of dezincing resistant brass according to the UBA positive list and alternatively made of the high-performance plastic PPSU allow unrestricted use in tap water and heating installations.

Precise press jaw guidance and insertion control

The special shape of the press sleeves and the newly designed stop rings ensure precise positioning of the Uponor press jaws. Inspection windows in the stainless steel press sleeves make it easy to check the depth to which the pipe is inserted before pressing.

Dimension-specific colour coding

The colour coding and clearly legible figures of the different dimensions are easy to recognise even from a great distance and in difficult lighting conditions.

Unique pressing control and test safety

The stainless steel press sleeves are sheathed with a colour-coded foil depending on the dimensions, which can be easily removed after pressing and thus offers a double pressing control in addition to the "unpressed-untight" function.

Flow-optimised design

The streamlined design ensures low zeta values and enables pressure loss optimised planning.

Fast and simple installation

Just three steps to the finished connection without deburring or calibrating: Cut, stick, press. The slim design of the finished connection also makes subsequent insulation easier.

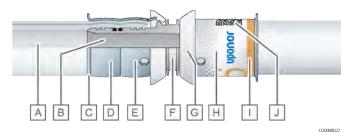
100 % compatible with existing Uponor components

Uponor S-Press PLUS fittings are matched to the existing Uponor composite pipe system.

Simple adjustment

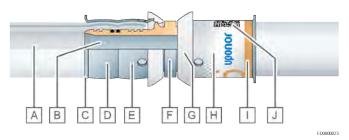
The installation can still be adjusted until completion of pressing. But even after the pressing process, the pipes can still be straightened until completion of the pressure test.

Online information available via QR code


The printed QR code provides 24/7 access to installation support, project database, item lists and online orders.

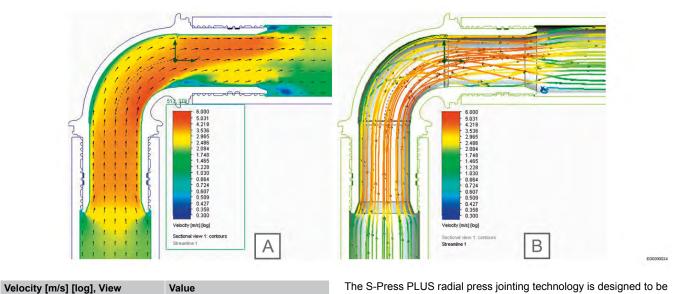
Certificates, few examples

- DVGW
- ÖVGW
- KIWA/KOMO


3.3 Uponor S-Press PLUS - design

Uponor S-Press PLUS composite fittings made of PPSU

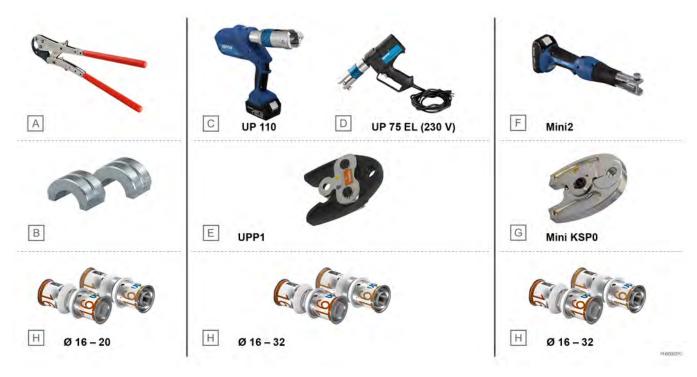
Item	Description
A	Uponor MLC or Uni Pipe PLUS composite pipe 16 – 32 mm
В	Flow-optimised design
С	Sleeve collar for press jaw centring
D	Stainless steel press sleeve
E	Inspection window for insertion depth
F	Fitting body made of PPSU
G	Press jaw stop
Н	Press indicator film
I	Colour-coded dimensional marking
J	QR code for additional information


Uponor S-Press PLUS made of dezincing resistant brass

Item	Description
A	Uponor MLC or Uni Pipe PLUS composite pipe 16 – 32 mm
В	Flow-optimised design
С	Sleeve collar for press jaw centring
D	Stainless steel press sleeve
E	Inspection window for insertion depth
F	Fitting body made of dezincing resistant brass
G	Press jaw stop
Н	Press indicator film
I	Colour-coded dimensional marking
J	QR code for additional information

Flow-optimised fitting design

A B



The S-Press PLUS radial press jointing technology is designed to be free of dead space, avoiding any risk of contamination due to
 stagnating water inside the fitting. Proven by microbiological tests at the Institute for Environmental Hygiene and Toxicology in Gelsenkirchen.

Sectional view 1: contours

Streamline 1

3.4 Uponor S-Press PLUS - fitting/tool combinations

Item	Description	Item	Description
А	Manual pressing tool	F	Mini2, battery tool
В	Interchangeable inserts	G	Mini KSP0, pressing jaw
С	UP 110, battery tool	Н	S-Press PLUS/S-Press PLUS PPSU fitting
D	UP 75 EL, electrical tool 230 V		dimensions in mm
E	UPP1, pressing jaw		

3.5 Uponor S-Press PLUS - fitting assembly

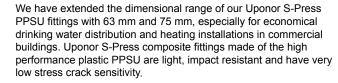
Insert the Uponor composite pipe into the fitting

Insert the Uponor composite pipe into the fitting. The pipe end does not have to be deburred or calibrated beforehand.

Apply the press jaw

Apply the press jaw with the same colour coding as the fitting to the press jaw guide in the stainless steel press sleeve.

The film can be easily removed after successful pressing


After pressing, a clear deformation of the stainless steel press sleeve is visible. In addition, the film can be easily removed after successful pressing (visual inspection).

Unpressed connections are reliably detected

Unpressed connections are reliably detected as leaky during the leak test due to the unpressed-untight function. An unpressed fitting also stands out clearly due to the indicator foil still being present on the stainless steel press sleeve.

3.6 Uponor S-Press PPSU fittings up to 75 mm

For the direct thread transition there are also 40 — 75 mm tin-plated S-Press adapter sleeves and S-Press adapter nipples made of dezincing resistant brass.

As a supplement to the modular Uponor RS fitting system and in conjunction with the tried and tested Uponor MLC composite pipes, it is now possible to realise pipe networks, including distribution and riser pipes, that are easy to install and cost-effective.

Uponor S-Press PPSU fitting 40 — 75 mm

Dimensional range	Description/properties	Material	Colour code/ dimension	
	"Unpressed-untight" test safety.Dimension-specific colour coding of	 Fitting made of PPSU Press sleeve made of stainless 	40	
	the stop rings.	steel	50 63	
EDUDUQS	 Press sleeve firmly connected to the fitting protects the O-rings from damage. 	Coloured plastic stop elements	75	
40 — 75 mm	 Press sleeve with inspection windows for easy checking of the insertion depth of the pipe before pressing. 			
	 The pipe can be aligned after pressing (until completion of the pressure test). 			
	High pull-out and bending strength			

for the finished joint.

Uponor S-Press PPSU 40 — 75 mm - fitting/tool combinations

Item	Description
A	UP 110, battery tool
В	UPP1, pressing jaw
С	UP 75 EL, electrical tool 230 V
D	Basic press jaw with press chain
E	S-Press PPSU fitting dimensions in mm

Uponor S-Press PPSU - fitting assembly with press chain

Insert the deburred composite pipe end

Insert the deburred composite pipe end into the fitting as far as it will go. Then place the appropriate press chain (same dimension and same colour code as fitting) around the press sleeve up to the coloured stop.

Hook the base press jaw into the press chain

Hook the base press jaw into the press chain and trigger pressing.

A clear deformation of the press sleeve

After pressing, the successful pressing is visible by a clear deformation of the press sleeve (visual inspection).

An unpressed connection leaks

For additional safety, an unpressed connection leaks under pressure load (unpressed-untight function).

3.7 Other fittings for Uponor composite pipes

Uponor S-Press metal fittings, dimension overview

Dimensional range	Description/properties	Material	Colour code/ dimension
14 mm	 "Unpressed-untight" test safety. Dimension-specific colour coding of the stop rings. Pressing control by means of coloured stop rings, which become detached during the pressing process. Press sleeve firmly connected to the fitting protects the Orrings from damage. Press sleeve with inspection windows for easy checking of the insertion depth of the pipe before pressing. The pipe can be aligned after pressing (until completion of the pressure test). High pull-out and bending strength for the finished joint. Pressing without deburring. 	 Brass, tin-plated Profiled aluminium press sleeve Coloured plastic stop rings 	14
Dimensional range	Description/properties	Material	Colour code/ dimension
	 "Unpressed-untight" test safety. Dimension-specific colour coding of the stop rings. Press sleeve firmly connected to the fitting protects the O-rings from damage. 	 Brass, tin-plated Press sleeve made of stainless steel Coloured plastic stop 	40 50 63
ED0000027	 Press sleeve with inspection windows for easy checking of 	elements	75

- Press sleeve with inspection windows for easy checking of the insertion depth of the pipe before pressing.
- The pipe can be aligned after pressing (until completion of the pressure test).
- High pull-out and bending strength for the finished joint.

Uponor S-Press and S-Press PLUS system adapters

Note

40 — 75 mm

When processing different third-party system fitting sides, the specifications of the specific manufacturer or system supplier must be observed.

The Uponor S-Press/S-Press PLUS system adapters are the ideal solution for a standard-compliant transition to an existing metallic pipe system, particularly when it comes to renovation or system expansion. The fitting side for connecting to metal pipes with standard dimensions is processed according to the manufacturer's specifications using the corresponding tools and press jaws. The Uponor S-Press/S-Press PLUS side is simply and securely connected to the Uponor composite pipe and the corresponding Uponor press jaw.

Uponor RS fitting system for distribution lines and risers

The modular Uponor RS fitting system for distribution and riser pipes lets you make all required press joints safely and easily on the workbench. Only here are heavy tools needed to press the connections. On site, the pre-assembled composite pipe sections are then inserted into the fittings without tools and locked.

This ensures fast and safe installation even under the most difficult spatial conditions. Difficult work with heavy pressing tools in cramped construction site situations or in overhead positions is a thing of the past.

Uponor RS is a unique fitting system for risers and other supply lines used in tap water and heating/cooling applications. Thanks to the modular concept, hundreds of fitting variants can be produced with only a few system components.

Uponor RS fitting system - benefits

- Innovative plug-in connection of base bodies and adapters for Uponor multilayer pipes up to 110 mm
- Only a few components allow many fitting variants
- Efficient stocking
- Adjustable until completion of the leak test
- Dimension-specific colour coding

Uponor RS fittings, dimension overview

Dimensional range	Description/properties	Material	Colour code/ dimension
ton ton	"Unpressed-untight" test safety.	 Brass, tin-plated 	63
	Dimension-specific colour coding of the stop rings.	Press sleeve made	75
	• Modular range of fittings, consisting of matching base bodies and press adapters.	 of stainless steel Coloured plastic stop element Plastic locking element 	
63 — 110 mm	 Press adapters with fixed stainless steel press sleeves can be conveniently pressed to the Uponor composite pipes away from the installation location, e.g. directly at the workbench. 		110
	 In the second step, the pre-assembled press adapters are inserted into the respective base bodies on site and fastened using a locking element for a secure connection. 		

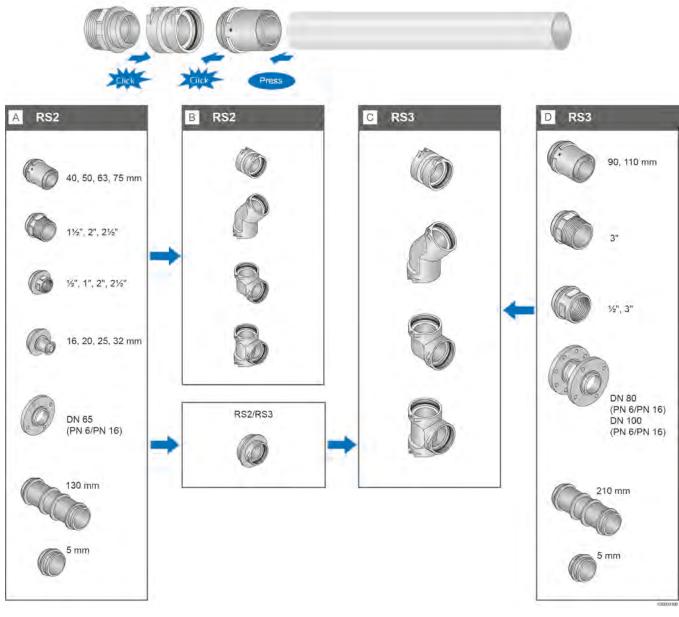
Flexible main manifold structure

Flexible main manifold structure – with the modular fitting system and the associated distance adapters, manifolds of different sizes can be manufactured flexibly in just a few simple steps.

Flexible angles

Flexible angles – walls and ceilings are often not perpendicular to each other, especially in old buildings. Using distance adapters (5 mm) in conjunction with two 45° angles, any desired angle can be achieved just by turning the components.

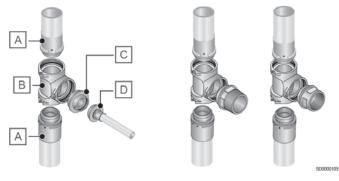
Distance adapters


Simple and quick changes to pipeline levels – using distance adapters in combination with 45° angles, level changes are possible with only minimal height differences.

Fixed points

Fixed points are often required in pipeline systems with long supply sections. Distance adapters (RS2/RS3) allow these to be created quickly and easily. The circumferential bars in the middle of the distance adapters facilitate the fastening of fixed point clamps.

The modular RS principle

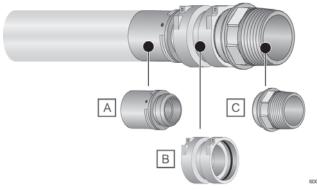


Item	Description
A	RS2 Adapter
В	RS2 Base Body

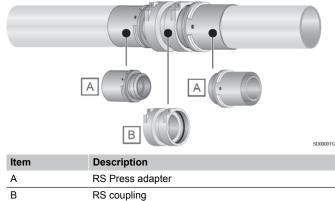
Item	Description
С	RS3 Base Body
D	RS3 Adapter

Configuration examples

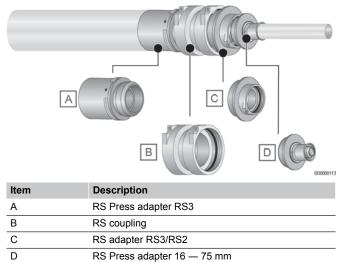
T-piece with outlets



Item	Description
A	RS Press adapter
В	RS T-piece
С	Adapter RS3/RS2
D	RS Press adapter 16 — 75 mm


Item	Description	
A	RS Press adapter	
В	RS angle 90°	-

Thread adapters



Item	Description
A	RS Press adapter
В	RS coupling
С	RS thread adapter AG

Couplings

Reductions

Processing steps for Uponor RS fitting

Attach press adapter

First the press adapter is inserted into a composite pipe that has been cut off square and deburred.

Pressing

A permanent connection is established using the press chain and the corresponding base press jaw.

Connect with base body

Innovative plug-in technology connects the press adapter and base body to one other.

Locking

Finally, slide the locking element into the opening of the base body and let it engage.

Uponor RTM offers a comprehensive range of fittings for selected Uponor pipes, which do not require any assembly tools to create the pipe joint. RTM fittings are quick to install and offer a high level of safety and longevity, both in drinking water distribution and in heating/ cooling applications.

RTM fitting benefits

- Integrated pressing function
- Dimension-specific colour coding
- No special tools necessary
- Optical and acoustic connection test
- Fast and simple to process

Uponor RTM fittings, dimension overview

Dimensional range	Description/properties	Ма	terial	Colour coo dimension	
A MAR	One-piece fitting with integrated pressing function (ring tension memory).	•	High-performance PPSU plastic or brass		16 20
ED000029	• The pressing process is initiated by the inserted pipe end; no additional tools are required for pressing.	•	Press ring made of high- strength, specially coated		25
16 — 25 mm	 Simple pressing control with the 360° viewing window and clearly audible click. 		carbon steel		

Dimension-specific colour coding of the safety locking device.

Subsequent alignment possible.

Pressing carried out

The released safety lock can be seen through the 360° viewing window. It does three things: It holds the press ring in tension until it is pressed, contains the colour coding for the dimension and indicates that the pressing process has been completed.

Processing steps for Uponor RTM fittings

Cut the pipe

Uponor RTM fittings

The pipe is first cut off square using the Uponor pipe cutter.

Calibrate


Before the fitting is assembled, the pipe end must be calibrated.

Pressing

The pressing process is controlled by inserting the pipe until the click sound is heard.

Check

Successful pressing can be seen through the transparent inspection window. If the colour-coded spacer has been pushed through the pipe end and out of the prestressed press ring, the press ring is closed

Insert the pipe until it clicks

When the composite pipe is inserted into the RTM press fitting, the safety lock is released from the press ring. A clear click can be heard to signal the successful connection.

Uponor Uni

Uponor Uni-X includes a selection of ³/₄" euro-cone fittings and adapters for drinking water distribution and heating/cooling applications.

In addition to the tin-plated Uni-C manifolds with ½" joints, Uponor Uni-C also includes a selection of ¾" screw connections and adapters for drinking water distribution and heating/cooling applications.

Material

Union nut, brass, tin-plated

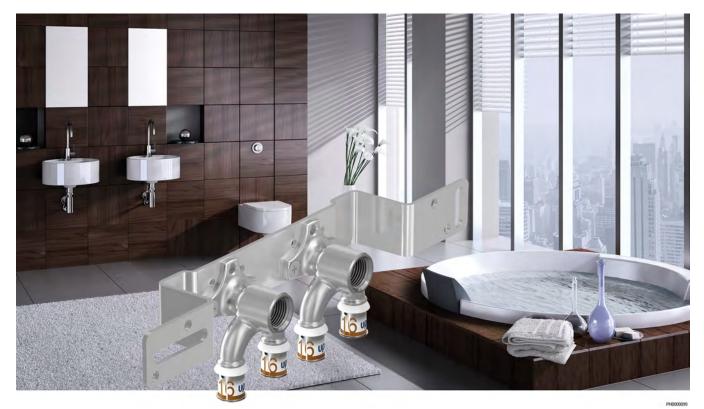
Pressure sleeve, brass, plated

Uponor Uni

- Simple transitions to other systems
- High application flexibility
- · Can be processed with conventional tools

Uponor Uni screw connection MLC, dimension overview

Dimensional range


ange Description/properties

- Two-part screw connection made of brass, with tin-plated union nut and pressure sleeve.
- For the direct connection of Uponor composite pipes to ½" Uponor fittings, manifolds and sanitary connections.
 - The ³/₄" variant allows connection to ³/₄" euro-cone moulded parts.

14 — 20 mm (Uni-C) 14 — 25 mm (Uni-X)

4 Drinking water distribution

4.1 System description

Uponor tap water components enable economical and simple installation in all areas, as well as hygienic system operation. The multifunctional concept means that fewer components are required for installation. For example, Uponor wall brackets can be used equally well on mounting plates, mounting rails or directly on the wall. Uponor tap water components allow all common connection variants to be realised, from T-joint installation to hygienic loop or series installation.

Drinking water distribution with the Uponor composite pipe system

- · Wide range of mounting options with only a few components
- Strong, non-twisting connection of wall brackets and mounting rail
- · Wall bracket can be used both on the wall and on the rail
- Flow-optimised U-shaped wall brackets for lower pressure losses in loop installations
- Matched system with mounting rails, wall brackets, sound insulation and waste water connection
- Proven Uponor press and RTM fitting connection technology

4.2 The tap water connection system from Uponor

Functional and practical

Uponor tap water components in the composite pipe system are the result of further refinement of our innovative products. The perfectly coordinated product range enables you to carry out cost-effective, simple assembly in all areas.

More options with fewer components

The multifunctional concept means you need fewer components for your installation. For example, Uponor press wall brackets can be used equally on mounting plates, mounting rails and directly on the wall. The refined design is adapted to all practical requirements.

Assembly-friendly design

The new Uponor tap water connection system is designed for fast and easy installation in practice. Practical details like the fastening screw with "fall arrest", make your work easier and ensure that assembly is carried out quickly and without unnecessary loss of time.

Time savings with prefabrication

The Uponor tap water connection system also includes prefabricated sets for common installation requirements. This saves you valuable time during installation on site.

Sophisticated fixing material

Pre-bent mounting rails as well as mounting plates and wall brackets for various installation situations facilitate work on the construction site.

Practical accessories

Accessories like the Uponor sound kit and waste water kit complete our delivery programme to ensure that nothing is missing on the construction site that is required for professional installation.

4.3 Main tap water components

Uponor wall brackets – quick and professional installation

Note

For an even greater variety of connection types, Uponor S-Press PLUS U wall brackets are now also available with a single-sided reduced connection (16-Rp¹/₂-20 and 20-Rp¹/₂-16 as well as 25-Rp¹/₂-20 and 20-Rp¹/₂-25).

Uponor S-Press PLUS U wall brackets with reduced connection on one side

Uponor S-Press PLUS wall brackets with mounting plate and sound protection set

Uponor wall brackets together with the matching mounting plates, rails and angles enable quick and versatile connections. The guide pin, which is simply inserted into the back of the mounting rail, allows the wall bracket to be easily locked in the desired position ($-45^{\circ}/90^{\circ}/+45^{\circ}$). The fixing screws ensure a stable and torsion-proof connection between wall plate and rail.

Uponor wall brackets

- Made of tin-plated brass
- Can be used either for surface mounting or on the Uponor mounting brackets or mounting plates
- Different designs and dimensions for U-shaped, single or double connection
- Available with pressed, RTM or threaded connections

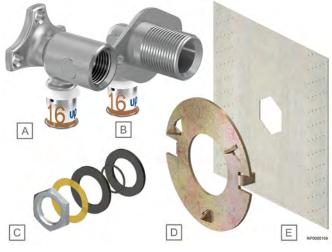
Uponor stainless steel wall brackets and adapters (SST)

The Uponor wall brackets and U wall brackets as well as fittings with stainless steel thread/press transition in conjunction with the Uponor composite pipes are the ideal problem solvers in critical tap water situations, such as low overall hardness of the tap water, or tap water with a corrosive effect on copper and brass materials.

In addition to the Uponor S-Press fittings, Uponor offers another material variant for lead-free installations made of the high-performance plastic PPSU.

- Stainless steel fittings for pure, hygienic and lead-free installation with existing stainless steel pipe systems – especially for critical tap water situations
- Enables lead-free installation
- Proven Uponor S-Press connection
- Transition to stainless steel pipe system uses a threaded connection or SST press technology

Feed-throughs for loop and series installation in drywall construction

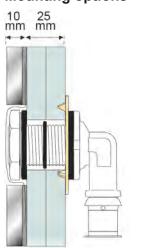


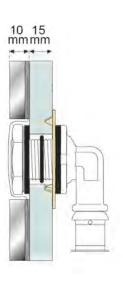
Uponor corner feed-throughs LWC with female thread according to DIN EN 10226-1 provide technically perfect and torsion-proof guidance through walls made from drywall, both during renovation and in new construction. Optionally as wall bracket or as U wall bracket for loop or series installation. Upon request, Uponor feed-throughs are also available in special lengths for installation depths from 35 to 65 mm in mm increments for specific projects.

Uponor feed-throughs are available with either Uponor S-Press PLUS, RTM or Q&E connection.

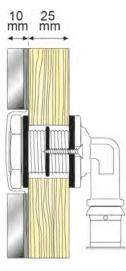
- In wall and wall feed-throughs in various designs
- Connections for common cisterns and fittings

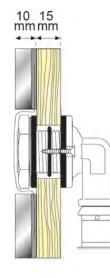
Uponor drywall feed-throughs


Item	Description
A	Uponor S-Press PLUS U corner wall seal LWC for optimum installation for series or loop installations in walls made from drywall
В	Uponor S-Press PLUS corner wall seal LWC for individual connection
С	Uponor mounting kit LWC
D	Uponor anti-twist device LWC
E	Uponor sealing flange LWC


 Variable installation depths of 25 or 35 mm for use in gypsum or wooden wall construction

- · Optionally also available with sound insulation
- Available as corner wall seal and corner U wall seal
- Minimum installation depth, can also be used with low partition wall depths of only 40 mm
- Torsion resistance guaranteed during installation


24 | Uponor MLC tap water and heating | Technical information


Mounting options

Torsion-proof installation in a plasterboard wall with Uponor anti-twist device LWC

ED0000032

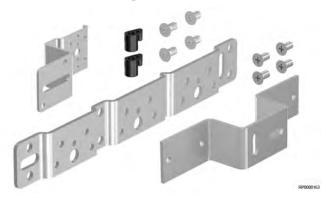
Torsion-proof installation in wood panelling with on site available wood screws

Loop fittings for hygienic drinking water distribution

Uponor U wall brackets and equipment connections with double connection enable hygienic loop and series installations

From a hygienic point of view, it makes sense to loop the water through at all tapping points – including in-wall fittings and cisterns– in order to avoid unnecessary stagnation in the system. For this purpose Uponor has also developed a special loop-through fitting for in-wall fittings in addition to the U wall brackets, which enables a continuous series or loop line installation.

Uponor prefabricated assemblies


Uponor assembly units

Sound protection set for "whisperquiet" operation

The Uponor sound protection set reduces the transmission of structure-borne noise from the installation to the wall structure and is compatible with Uponor mounting plates and brackets as well as mounting rails.

Uponor mounting accessories



- Extensive assortment of mounting plates, rails and angles for the torsion-proof attachment of wall brackets
- Components for sound decoupling

- Factory prefabricated sets for equipment and waste water connection
- With DIN 4109 compliant sound insulation
- Saves assembly time on the construction site

Uponor ISI boxes

- Prefabricated assembly units for different equipment connections in drywall construction
- Insulating body made of closed-cell insulating foam
- Sound insulation tested according to DIN 4109 and VDI 4100 Class 2 and 3

Ready-to-connect Uponor Smart ISI equipment

The Uponor Smart ISI boxes are designed for installation in partition wall systems and consist of a thermally insulating, condensation-proof insulating body with pre-assembled, ready-to-connect tap water components from the proven Uponor composite pipe system.

The integrated Uponor wall brackets and U wall brackets can be used in all T-joint, series or loop installations. The modules are already equipped with Uponor 16 mm composite pipes ready for connection. Pipe connector plugs protect against dirt on the construction site.

Uponor Smart ISI equipment connection boxes

- Prefabricated installation units for drinking water distribution
- Time-saving, secure and quick to install
- Energy-efficient thanks to continuous thermal insulation up to the tapping point
- Optimum sound insulation according to DIN 4109 and VDI 4100:2012-10

Item Description

A	High-quality closed-cell PU foam with optimum sound insulation to DIN 4109 and VDI 4100:2012-10 as well as good thermal insulation properties (λ = 0.024 W/mK)
В	Box centre marking for quick alignment
С	Markings for the centre of the wall for easy height adjustment
D	Uponor Smart S-Press PLUS U wall brackets at typical spacing, completely pre-assembled and tested
Е	Sheet metal for fastening to drywall profiles using crimp technology
F	Preinsulated pipes for easy, quick additional insulation
G	Uponor Uni Pipe PLUS 16 mm composite pipes ready for connection with pipe connector plugs to prevent contamination
Н	Uponor Smart ISI washbasin attachment WT (optional)

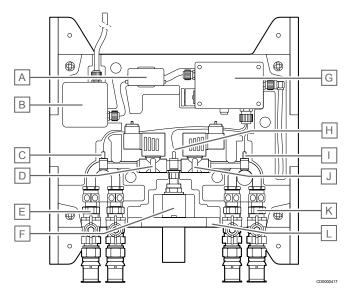
5 Uponor Smatrix Aqua PLUS

5.1 System description

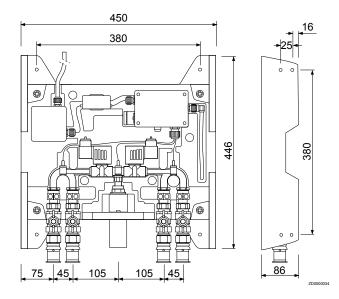
Variations in use of sanitary installations in buildings can lead to water stagnating in seldom-used pipe sections. This can lead to contamination of the tap water with e.g. bacteria, resulting in hygiene problems. The Uponor Smatrix Aqua PLUS flushing system is the ideal solution for hygiene problems, especially in nursing homes, clinics, sport facilities and hotels.

The smart monitoring technology allows the water flow of several buildings to be monitored and regulated – easily on a computer or on the go with a mobile device. Uponor Smatrix Aqua PLUS can also be retrofitted in older buildings if a loop installation is present. Only minimal time and cost are needed to meet all the requirements of the Germany Drinking Water Ordinance – from planning to operation.

Benefits

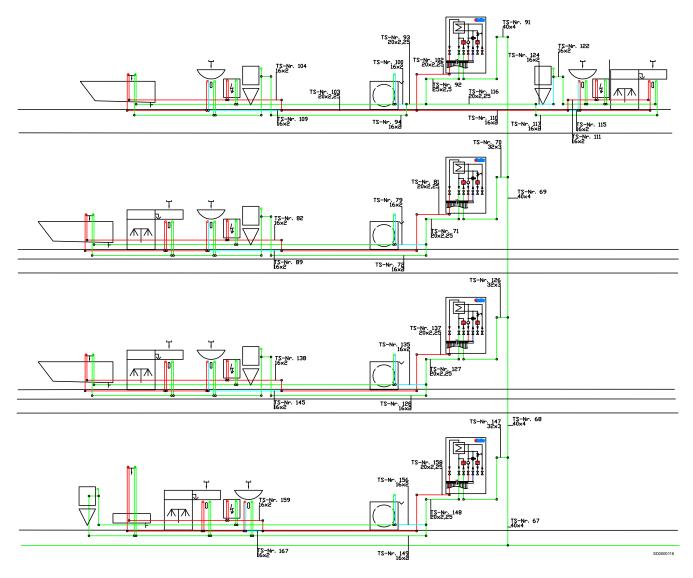

- Safe compliance with hygiene requirements and legal standards
- Enables fast and easy installation and commissioning and ensures proper operation as early as the shell construction phase

5.2 Uponor Smatrix Aqua PLUS flushing unit


Uponor Smatrix Aqua PLUS is a ready-to-install flushing unit for the automated hygienic flushing of cold and hot water pipes in loop or series installations in accordance with VDI/DVGW requirements. Prefabricated at the factory including the insulating shell and Uponor S-Press connection for Uponor composite pipes and DN 40 waste water connection. Standard flushing criteria and parameters such as flushing times and duration are already pre-set in the integrated control unit. These values can be changed from any computer using the optional Uponor Smatrix Aqua PLUS USB radio receiver.

Flushing unit components

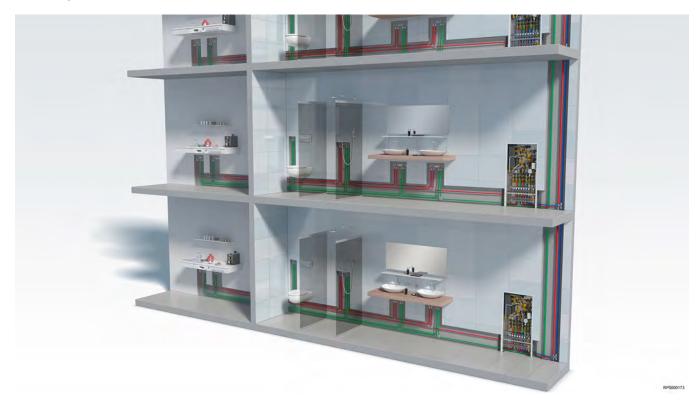
Item	Description
А	Power converter
В	230 V junction box
С	Hot water temperature sensor
D	Hot water solenoid valve
E	Hot water connection (PWH) with shut-off ball valve
F	DN 40 waste water connection
G	Control box with wireless module
Н	Inactive
I	Cold water temperature sensor
J	Cold water solenoid valve
К	Cold tap water connection (PWC) with shut-off ball valve
L	Float switch (backflow protection)


Dimensions (mm)

Technical data

Description	Value
Max. operating pressure	10 bar
Max. operating temperature	70 °C
Min. ambient temperature	5 °C
Max. ambient temperature	40 °C
Min. flow pressure	1000 mbar
Max. flow volume	0.2 l/s
VHF radio frequency	169 MHz
Radio range	1000 m (clear view)
Power supply	230 V AC/50 — 60 Hz
Tap water connection	Uponor S-Press
Waste water connection	DN 40

5.3 Function description


The automatic Uponor Smatrix Aqua PLUS flushing unit is a key component of Uponor hygiene logic. Using sensors, it permanently monitors and regulates the proper operation of drinking water distribution systems and ensures hygienic water exchange. Based on the loop installation in a drinking water installation, the Uponor Smatrix Aqua PLUS flushing unit can be integrated into any section of the loop.

All materials that come into contact with drinking water meet the hygiene requirements of the KTW Guideline and DVGW Worksheet W 270 and comply with the UBA Positive List (4MS). The tested backflow protection also ensures a high level of safety, as confirmed by the DVGW test according to DVGW Worksheet W 540. Connections from below with the Uponor S-Press fitting profile facilitate integration into the loop line and save time and material.

Water stagnation is noticeable from the constant temperatures at the measuring points. To meet VDI/DVGW 6023 requirements, the threshold values have already been preset in the factory. If the preset maximum stagnation times are exceeded, the Uponor Smatrix Aqua PLUS flushing unit flushes the hot and cold water loops alternately. During normal operation, the water throughout the pipe network is exchanged when the target temperatures are reached.

6 Hot water generation

6.1 Uponor decentralised heat interface units

One of the key factors that influence perfect drinking water quality is the avoidance of long holding times and unfavourable temperature ranges. Decentralised heat interface units and loop installations offer maximum security, so that the risk of microbial contamination can be minimised.

The requirements for the safety and purity of drinking water are clearly defined. The planning, construction and operational implementation is often associated with problems, as is frequently revealed by the large number of findings over the action value for Legionella. Added to this is the increased demand among consumers for an unlimited supply of hot water from the drinking water system at any time, preferably without any long delays.

Two criteria are key for optimum drinking water hygiene, according to the generally acknowledged rules of the trade: Regular water exchange within the entire piping system, as well as the maintenance of the required temperatures in the cold water, hot water and circulation pipes. In order to meet these requirements, from the transfer point in the building to the point of discharge, planners, installers and operators are jointly required to ensure that planning, installation and commissioning complies with regulations and legal requirements. Although this may sound complex and highly theoretical at first, life is made easier for all those involved in the construction industry if the risk of contamination is consistently ruled out in the planning phase. Anyone who decides on a domestic hot water supply in accordance with the flow principle with decentralised heat interface units eliminates risks such as legionella growth in cooler strata of central drinking water tanks or extensive circulation pipes.

In accordance with DIN 1988-200, in decentralised fresh hot water technology, the heat for hot water production is no longer stored in the drinking water itself but in a hygienically harmless form in heating buffer storage tanks. In addition, hot water distribution and circulation pipes in the building, which may cause microbial contamination due to insufficient insulation or poor hydraulic balancing, are no longer

needed. A loop-through ring installation is recommended for the hygienic distribution of hot and cold drinking water on individual floors. This not only allows small line cross-sections and water volumes, but also enables flow through all parts of the pipe, regardless of which tapping points are used frequently, infrequently or not at all. This prevents stagnation in the single-storey distribution system during normal consumption.

In apartment buildings, a separate heat interface unit handles hygienic hot water preparation for each usage unit. An efficient heat exchanger not only ensures a high level of hot water convenience, but also low return temperatures, which in turn contribute to the energy-efficient operation of the heating system. It is also important for the operator that it should be easy to record consumption in every usage unit by means of the directly integrated water and heat meters.

The heat interface units are connected directly to the heating supply line in the 2-pipe system so that there is no need for the central hot water and circulation pipes in the supply shafts. This reduces the size of the supply shafts by approx. 40 %. As a result, radiated loss is avoided in the lines and in the no longer required drinking water storage tank. This not only increases energy efficiency, but also much more importantly for hygiene - also prevents stagnation in the cold water line. Here, in contrast to the central hot water preparation system, a significantly higher water exchange takes place, as the cold water pipe covers the total requirement (hot and cold) of the connected usage units.

Buffering heat instead of storing it in the drinking water

For m docum www.

For more detailed information, product range and documentation please visit the Uponor website: www.uponor.com.

In addition, decentralised fresh water technology can effectively counteract the risk of contamination in drinking water. The circulation or storage of heated drinking water is completely avoided in decentralised fresh water stations, if possible. Only as much drinking water is heated to tap temperature, as the user needs right now. The required energy is not stored in the form of drinking water, but rather in buffer tanks that use heating water as a medium. Thus, the concept also meets the requirements of DIN 1988-200, which stipulates: "If energy is to be stored, it should not be stored in the drinking water, but instead the technique of storing energy in the heating system, e.g. through buffer storage, is to be preferred."

The benefits of decentralised generation of hot drinking water

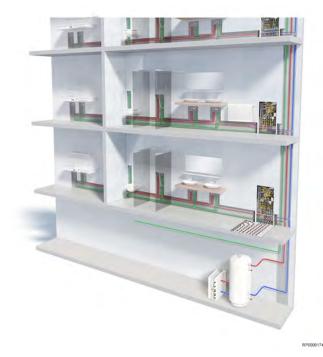
Buildings are responsible for at least 40 % of global energy consumption and over a third of greenhouse gas emissions*. That's why new ways of enhancing energy efficiency in buildings are vital in combating human induced climate change. Uponor decentralised Combi Port & Aqua Port heat interface units make a key contribution by supplying on-demand, energy efficient hydronic heating and cooling as well as hygienic hot water.

For hygiene reasons, the hot water temperature in the tank and distribution lines of a centralised system must be kept at 55-60 °C, with even higher temperatures required to heat up the system. Since the decentralised domestic hot water generation and water volumes in the pipe system remain below 3 litres, the temperatures can be kept lower. The supply temperature to the heat exchanger needs to be only 5K higher than the desired domestic hot water temperature. The lower operational temperature and only two heat-emitting pipes ensure significant energy savings.

Hydraulic balancing is also easier and sustainable, while the constantly low return temperatures enhance the efficiency of both traditional and renewable energies.

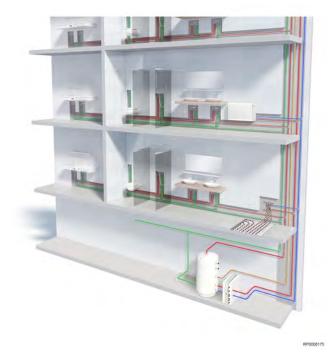
Uponor decentralised heat interface units

- New generation of energy-efficient domestic hot water generation and heating/cooling distribution
- Hygienic hot water generation on demand to avoid legionella growth
- Individually developed & prefabricated heat interface units
- 58 % energy savings in distribution pipes through decentralised heat supply system
- Up to 80 % energy savings in renovation projects (incl. insulation measures)
- Lower investment costs than conventional systems and significantly lower operating costs


Further benefits

- No need to store drinking water in service water tanks
- No need for mandatory testing according to the German Federal Drinking Water Ordinance (TrinkwV)
- Drinking water heating using the through-flow principle
- Heating distribution circuit integrated in the station ready for installation
- Pump modules with injection circuit for radiant heating systems
- Residential unit heating system available all year round with individual regulation

6.2 Comparing a 2- and 4-pipe system


Comparison between a 2-pipe system with heat interface units and a conventional 4-pipe system with central hot water preparation.

Decentralised heating of drinking water

- Decentralised flow heater, giving legal security to residential development operating companies.
- Saving on hot drinking water and circulation pipes from the central heating system to the residential units.
- Low system temperatures in the building piping network, as hot drinking water pipes and circulation pipes are not required.

Centralised drinking water storage

- Large system* subject to mandatory testing by residential development operating companies.
- Increased effort for pipe network, as hot drinking water pipes and circulation pipes are required.
- High temperatures in the building piping network in orderto maintain drinking water hygiene.

* According to German Federal Drinking Water Ordinance (TrinkwV) Article 14

In conclusion

There is a 58 % energy saving with a 2-pipe system compared to a central domestic hot water system.

Final report on the project: "Methods for reducing conventionally generated heat distribution losses in solar-supported multi-family homes", acronym: "MFH-re-Net", funding code: 03ET1194A. The report is available to download from www.uponor.com.

6.3 General technical information

Technical data

Description	Value
Max. operating temperature	85 °C
Max. primary differential pressure	2.5 bar
Operating pressure	PN 10
Including heating circuit pump and manifold	PN 6 to PN 10
Minimum cold water pressure	approx. 2 bar
Connections, flat-sealing	3/4" IG or 1"

Technical data for consumer and drinking water stations (all stations must be earthed).

Heating system

The heating system must be planned and implemented in accordance with accepted engineering practices, as well as the DIN standards and VDI guidelines described below. If necessary, please observe the applicable and comparable country-specific regulations and standards.

The list is not necessarily exhaustive.

- DIN EN 6946 Calculation of the U-value
- DIN EN 12831 Calculation of heat load
- DIN EN 128282 Heating systems in buildings Planning of water-based heating systems
- DIN 18380 VOB / C
- DIN 4109 Sound insulation in buildings
- TRGI Technical Rules for Gas Installation
- VDI 2035 Conditioning of heating water
- EneV Energy Saving Directive

We recommend that sludge and air separators should be fitted. The expansion vessel must be adapted and adjusted to the system.

Drinking water delivery

The drinking water installation must be planned and implemented in accordance with the German Infection Protection Ordinance, in particular Article 37 of the German Infection Protection Act, DIN 1988, DIN 50930 Part 6, DIN 2000, DIN 2001 and DIN 18381 as well as VDI 6003 and VDI/DVGW 6023 and the DVGW directives quoted below, as well as generally accepted engineering practices. (The list is not necessarily complete.)

These are:

- W 551 Drinking water heating and drinking water piping systems, technical measures to reduce Legionella growth
- W 553 Dimensioning of circulation-systems in central drinking water heating systems
- W 291 Cleaning and disinfection of water distribution systems
- Regulations of local water supply companies
- The applicable and comparable country-specific regulations and standards.

This results in a number of points that should be pointed out specifically in what is not necessarily an exhaustive list. For buildings with six or more floors we recommend installing a pressure reducer in the cold water intake.

Heat exchanger (statutory and legal bases)

The water must be analysed to clarify whether copper-welded heat exchangers (standard version) or possibly diffusion-welded heat exchangers are used. These are necessary if, for example, conductivity is greater than 500 μ S/cm or if galvanised hot water pipes are found in the property during renovations.

Avoiding water hammers

According to DIN 1988-200, section 3.4.3, the sum of water hammer and static pressure must not exceed the permissible operating pressure.

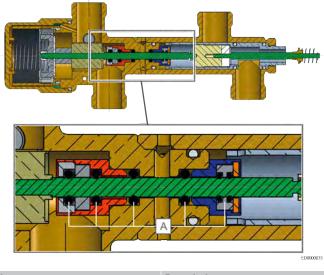
 The permissible operating pressure for heat interface units is 10 bar.

When heat interface units are operated in drinking water installations, care must be taken to avoid high water hammer (for example due to fittings, booster systems, etc.). In the case of fittings with very short opening and closing times, there are always strong short-term pressures that exceed the specifications of DIN 1988-200, section 3.4.3, inadmissibly.


The following specifications must therefore be observed when operating the drinking water installation:

- The positive pressure surge (when closing the fitting) must not exceed 2 bar.
- Negative pressure surges (when opening the valve) must not be more than 50 % lower than the flow pressure created after opening.

Damage to components such as heat exchangers (solder cracks, deformation of exchanger plates, leaks, etc.) may result in a breach of this DIN specification. DVGW worksheet W 303 recommends the most effective and reliable measure to optimise pressure at the point of origin. The operation and maintenance of the systems must be in accordance with DIN EN 806-5.


6.4 Main operating principles

Proportional volume control valve

The proportional volume control valve is a central element of domestic hot water supply in our heat interface units. It is responsible for the rapid switching of the heating system to domestic hot water supply. As standard, the proportional volume control valve ensures the proportionality of the through-flow rates of hot water and drinking water. Most units have a priority circuit for domestic hot water instead of home heating. The heating water cannot enter the drinking water system via the proportional volume control valve or vice versa.

The system interior has a coated drinking water side and a patented triple seal on the moving parts in the sanitary and heating area.

Item	Description
A	Triple seal

Operating mode

a) Hydronic heating

The starting signal is the opening of the hot water tap. The cold water pressure pushes the PM regulator to the left on the roller diaphragm and thus initiates hot water dispensing. The route to the heat exchanger for the heating system is opened in response to hot water requirements. Home heating is deactivated while the hot water tap is in use. The proportionality on the heating side is assured by means of a cover.

b) Heating mode

Iponor Combi and Aqua Port product animat

The hot water tap is closed, the spring pushes the proportional volume control valve to the right again back to its starting position. The energy supply to the heat exchanger is stopped and released for home heating.

https://www.youtube.com/

Uponor Combi and Aqua Port product animation – available on YouTube

6.5 Variants of Uponor heat interface units

Note

For more detailed information, product range and documentation please visit the Uponor website: www.uponor.com.

Decentralised heat interface units

Uponor Combi Port PRO UFH including drinking water generation in combination with heating/cooling connection

Uponor decentralized heat interface units heat the tap water in residential and office buildings directly on-site on the same floor using a flow-through principle. Due to the direct connection to the heating supply, neither hot water storage tanks nor hot water distribution with circulation lines in the supply shafts are required. Uponor decentralized heat interface units are also available as so-called Combi Ports, in which the drinking water heating is combined with surface heating/cooling.

Satellite installations for remote tapping points

Uponor tap water heating station Aqua Port Compact

Compact "satellite installations" such as the Uponor Aqua Port Compact water heating installation can be used on floors with extensive drinking water distribution at remote tapping points (such as the kitchen sink or guest bathroom). This means that short output times can also be achieved without a circulation line. In addition, the measure usually reduces the pipe volume downstream of the fresh water installation to less than 3 litres, thus eliminating the sampling requirement.

Centralized heat interface units

Uponor Aqua Port centralized heat interface unit

Uponor centralized heat interface units heat tap water centrally in the central heating system and direct it via a hot water and circulation line (PWH and PWH-C) to the tapping points. A heating buffer storage tank provides the energy required to heat the hot water. In addition, very effective regenerative energies can be integrated into this buffer storage. Tap water is not stored – the heating of the water takes place only when necessary. The modular design enables flexible performance adaptation to different property sizes, from terraced houses to large-scale facilities in barracks, industrial systems, hotels, care facilities and hospitals.

7 Planning principles for water distribution

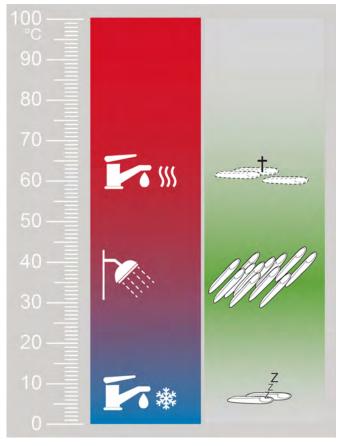
7.1 General information

Drinking water is our most important foodstuff

Drinking water intended for human consumption must be free from pathogens, fit for human consumption and pure. Its quality must be such that it does not adversely affect human health even after lifelong consumption. This is why the strictest demands are made on the quality of drinking water. No other foodstuff is checked as regularly or frequently.

Protection of drinking water

The protection of drinking water is laid down in the Federal Drinking Water ordinance. Homeowners, architects, planners and plumbing, heating and air conditioning installers bear the responsibility for many years to ensure that drinking water at every tap complies with the chemical and microbiological requirements (parameters) of the regulation.


Measures to reduce Legionella growth

Legionella pneumophila

In drinking water heating systems and their connected hot water distribution systems, conditions must be created that prevent a concentration of Legionella that is hazardous to health.

Legionella are rod-shaped bacteria which occur naturally in small amounts in fresh water, e.g. in lakes, rivers and occasionally also in tap water. The group of Legionella includes some 40 known forms. Some Legionella species can cause infections by the inhalation of contaminated aerosols (finest water droplets) into the lungs, for example while showering or from humidifiers in ventilation systems. In persons with health limitations such as a weakened immune system or chronic bronchitis, this can lead to pneumonia (Legionella pneumonia or Legionnaires' disease) or Pontiac fever.

Influence of water temperature on Legionella proliferation

According to DVGW Worksheet W 551, the risk of infection is directly related to the temperature of the tap water extracted from the drinking water distribution system and the length of stay in the system. The temperature range in which Legionella growth occurs is between 30 °C and 45 °C. The worksheet describes the technical measures needed to reduce Legionella growth in drinking water distribution systems, based on the current state of knowledge. Measures for the remediation of contaminated drinking water systems are also listed.

When planning and dimensioning drinking water pipes, the following points are important from a hygienic (microbiological) point of view:

- The shortest possible pipelines and small but hydraulically sufficient pipe diameters in order to achieve the shortest possible residence time of the tap water in the system.
- Stagnation of tap water in parts of the system that have not had water flowing through should be avoided.
- The heating of cold tap water distribution systems by environmental influences must be avoided.
- Unused parts of the network must be emptied and disconnected.

Generally recognised engineering practices

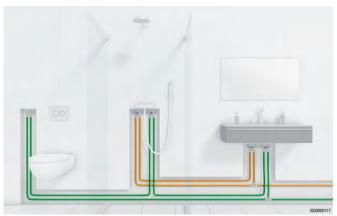
The Drinking Water Ordinance as well as other laws and Ordinances often refer to the "generally recognised engineering practices". These include national standards and guidelines (DIN, DVGW, VDI) or international standards (EN, ISO) and technical data sheets from the relevant associations. These documents are used by the courts to assess whether an installation is designed, built and operated in accordance with generally accepted engineering practices. The generally accepted engineering and the construction and

operation of drinking water distribution systems are laid down in the European basic standards DIN EN 806-1 to 5, DIN EN 1717 and the national supplementary standards DIN 1988-100 to 600 "Technical Rules for Drinking Water Delivery - (DVGW) Technical Rules". In addition, DVGW Worksheets W 551 and 553 and VDI standard 6023 "Hygiene in drinking water distribution systems" must be observed.

European standards with national supplements

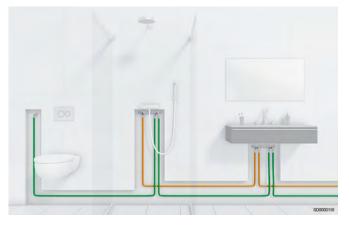
European basic standards	National supplementary standards
DIN EN 1717 Protection of drinking water	DIN 1988-100 Protection of drinking water
DIN EN 806 Part 1: General information	-
Part 2: Planning	DIN 1988-200 Planning
Part 3: Pipe sizing	DIN 1988-300 Pipe sizing
Part 4: Installation	-
Part 5: Operation and maintenance	DIN 1988-500 Pressure boosting stations with RPM-controlled pumps
-	DIN 1988-600 Drinking water installations in connection with fire fighting and fire protection
-	DIN 1988-7 Corrosion and scaling is defined in DIN 1988-200

European basic standards with national supplementary standards for the planning and construction of drinking water distribution systems


Holistic, property-specific planning is important

The planning stage already sets the course for hygienic and energyefficient drinking water distribution and comfortable use. A modern drinking water distribution system must not only comply with current engineering practices to ensure tap water hygiene, it should also be energy-efficient. The demands on the comfort of drinking water distribution have also risen significantly. Modern bathroom fittings with high flow rates and strict requirements for hot water output times (e.g. DIN 1988-200 or if the work contract specifies it, VDI 6003) can be a challenge for the planner. In order to meet all requirements, integral planning involving all the trades concerned is necessary. Here a room data sheet coordinated with the owner can be helpful. This should include at least the following specifications:

- a detailed description of equipment and use (VDI 6000)
- the concept for drinking water distribution with pipe routing and tapping points
- specifications for intended use


7.2 Installation variants

Loop installation

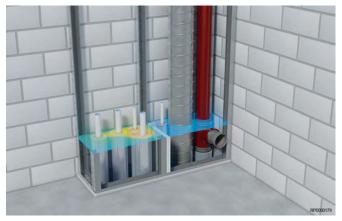
In a loop installation, the tapping points are connected in a similar way to a series installation. However, the line from the last consumer leads back to the starting point. This enables a hygienically perfect water exchange during operation, regardless of the tapping point from which water is taken. As the tapping points are supplied from two sides, assembly effort is reduced. The plumber can use a single dimension throughout for the connecting lines. In addition, the loop installation allows the automatic Uponor Smatrix Aqua PLUS hygiene flushing unit to be integrated into the loop line at any point. The best place is where connecting to the sewage pipe is easiest.

Series installation

In a series installation, the tapping points are connected to the Uponor S-Press U wall bracket and the installation pipes are immediately routed to the next tapping point. Thus a complete water exchange of the floor installation takes place when the last tap is used. Ideally, therefore, the most frequently used consumer, for example the toilet flush or the washstand, should be included at the end of the row. With this type of installation, a flushing unit must be permanently connected to the last consumer, which may not be compatible with the waste water system. Just as with a T-installation, a larger pipe dimension is usually used, which is then progressively reduced until the last outlet.

T-installation

In a T-installation, all consumers are individually connected to the supply lines via T-joints. The installation is usually started with a larger pipe dimension, which is then reduced progressively until the last tapping point. This minimises line distances. However, in T-installations there is a risk that water will stagnate and germinate in the connecting pipes to consumers used less frequently. A T-installation should therefore only be used at tapping points used daily and regularly.


7.3 Circulation systems

Hot water distribution systems, in which hot water is to be provided continuously directly at the tapping points, should have a permanently maintained hot water circulation. DIN 1988-300 must be used to size the pipe diameters in the circulation systems and the boundary conditions specified in DVGW Worksheet 551 must be observed in order to avoid the above-mentioned health hazards.

Requirements

The entire hot water distribution system should be operated in such a way that, on the one hand, the hot water leaves the water heater at a temperature of at least 60 °C and flows back into the heater with a temperature loss of at most 5 K. On the other hand, there must be sufficient hot water volume flows in all circulation lines. The DVGW Worksheets recommend operating the circulation system with a water temperature of at least 57 °C at the end of each return line.

Protection of cold water pipes from heating

Thermally isolated cold water line (PWC) in an installation shaft to prevent inadmissible heating

Circulation systems can have negative effects on tap water hygiene, for example if circulation lines are laid together with cold water lines in shafts or pre-wall installations. The danger here is that the water in the cold water pipe will heat to a point above the permissible value of 25 $^\circ\text{C}$ and become contaminated with germs.

To minimise the risk of germs in cold water pipes, the following measures are possible, for example:

- Lay warm lines (heating, PWH, PWH-C) and cold water lines (PWC) separately
- Sufficient insulation of hot and cold water lines (EnEV, DIN 1988)
- Eliminate circulation lines due to decentralised tap water generation (by installing heat interface units)

Calculations

The required volume flows are calculated according to DIN 1988-300 using the differentiated design method. For cold and hot water pipes in buildings with up to six apartments without circulation lines, the simplified design method described in DIN EN 806-3 can be used for calculations. The Uponor HSE calculation software is available for calculation using the differentiated calculation method.

Uponor Aquastrom T PLUS

Uponor Aquastrom T plus is a thermostatic valve with pre-sets for circulation lines in accordance with DIN 1988-300 and DVGW worksheet W551. It controls the circulation water temperature within the recommended control range of 55 °C to 60 °C (max. control range 40 °C to 65 °C; control accuracy \pm 1 °C).

The valve automatically supports thermal disinfection. The volume flow increases about 6 K above the set temperature and decreases – independent of the set temperature – from about 73 °C in the residual volume flow. The valve thus optimally supports the thermal disinfection of the circulation system. The max. volume flow rate can be pre-set and shut off independently of the set control temperature.

The valve, with a bronze body, is equipped with a drain valve with a hose tap, which can be used to drain the circulation line for maintenance. Temperature monitoring is possible using a thermometer or temperature sensor. The temperature setting can be secured against adjustment using a sealing cap. The set temperature value can still be read off.

Technical data

Description	Value	
Max. operating temper	90 °C	
Nominal pressure		16 bar
Factory settings	Temperature	57 °C
	Flow rate setting	DN 15: 2.0

Uponor Aquastrom T PLUS benefits

- Automatic thermal control of the flow rate
- Supports thermal disinfection
- Volume flow increases about 6 K above the set temperature, quickly reaching disinfection temperature in the line bundle
- Restricts the volume flow again above 73 °C to ensure disinfection of other parts of the system
- High corrosion resistance
- Temperature setting can also be read with sealing cap on
- Subsequent lead sealing possible
- Temperature monitoring with thermometer or temperature sensor (accessory) supported for integration into building management system
- Max. volume flow can be pre-set independently of the set control temperature and switched off for maintenance purposes
- With integrated drain valve for hose tap
- DVGW-certified

7.4 Use of trace heating

Caution!

The pressure increase in system parts due to the heating cable used must be observed. Suitable safety measures must be provided to ensure pressure equalisation. The installation guidelines and instructions of the trance heating cable manufacturer must be followed.

Uponor composite pipes are generally suitable fuse of trace heatings. The internal aluminium tube ensures uniform heat distribution around the pipe; the manufacturer's normal temperature limit of 60 °C must be taken into account. The heating cable must be attached in accordance with the manufacturer's instructions, whereby the Uponor composite pipe is to be classified as a plastic pipe.

If Uponor composite pipes are fitted with an trance heating cable, it must be ensured that the water can expand accordingly. If this is not

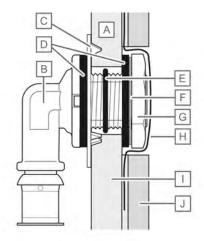
the case, e.g. for storage tank outlets to the hot water manifold, for short distances to the tapping points or for risers which only bridge one storey, damage to the Uponor pipe due to the high pressure rise cannot be ruled out.

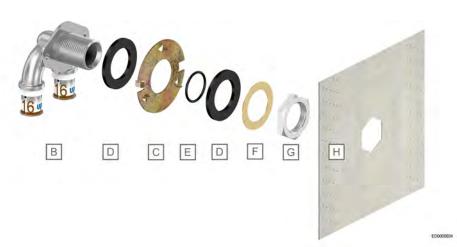
In such cases, appropriate safety measures, such as the installation of a suitable safety valve or a corresponding diaphragm expansion vessel, must be taken.

7.5 Connections

Connection to through flow heater

Due to their design, hydraulically controlled electric and gas-fired through flow heaters can build up unacceptably high temperatures and pressures during normal operation and in the event of a fault, which can cause damage to the pipe system. Uponor installation pipe systems may only be connected directly to electronically controlled devices. When using electronically controlled devices for tap water heating, the manufacturer's instructions must be observed.


Connection to hot water tank


In general, when connecting to hot water storage tanks (especially directly fired hot water storage tanks, solar storage tanks and special designs), it must be ensured that in both normal operation and in the event of a malfunction the maximum operating limits of Uponor installation pipes are not exceeded. This applies in particular to the maximum hot water outlet temperature, which must be checked during commissioning or requested from the manufacturer. In case of doubt, suitable safety measures (such as the installation of a service water mixing valve) must be provided.

Fitting connections

Fitting connections must always be mounted so as to be twist-proof.

7.6 Moisture protection

Professionally sealed Uponor S-Press PLUS U corner wall seal LWC with Uponor LWC mounting kit and Uponor LWC sealing flange

Item	Description
A	Drywall planking (here: plasterboard)
В	Uponor S-Press PLUS tap elbow LWC
С	Uponor anti-twist device LWC
D	Seal

Item	Description
E	Centring rubber ring
F	Pressure washer
G	Fitting nut
Н	Uponor sealing flange LWC
1	Tile adhesive with waterproofing provided onside
J	Tiles

The required moisture protection in sanitary facilities is regulated in DIN 18534 "Waterproofing of interior spaces". The following designs are limited to moisture protection in the area of sanitary fittings and seals, for example in the area of drywall facing.

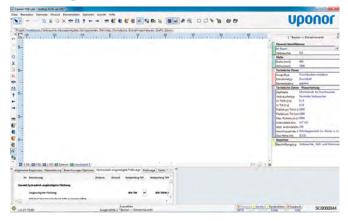
Moisture protection around sanitary fittings and seals

In the case of in-wall fittings, the sealing to the brickwork or to drywall facing must be provided with a moisture seal suitable for the fitting. The tiler incorporates these into a surface seal in accordance with recognised engineering practices.

8 Pipe network calculations according to DIN 1988-300

8.1 General information

The calculation of drinking water distribution systems is carried out according to the calculation principles of DIN 1988-300: "Technical Rules for drinking water distribution Systems – Determination of Pipe Diameters DVGW Technical Rules".


Dimensioning of cold and hot water pipes according to DIN 1988-300

The pipe diameters of all sections of the drinking water system are determined by the following steps:

- Determine the calculated flow rates of the tap fittings and determine the total flow rates for each section
- · Calculate the peak flow rate
- Calculate available pipe friction pressure gradient for all flow paths
- · Select the pipe diameter for the most unfavourable flow path
- Select the new available pressure drop and then the pipe diameter for the next most unfavourable flow path
- Repeat step 5 until all sections have been dimensioned

8.2 Planning reliability with Uponor HSE

HSE-san: For hygienically perfect drinking water distribution

For the implementation of the European series of standards EN 806 for the planning, execution and operation of drinking water distribution systems, DIN 1988-300 for the dimensioning of economical and hygienically perfect drinking water distribution systems was published in 2012. Hygiene aspects such as avoiding stagnation required a reduction in the peak volume flow calculation. A further significant aspect of the amendment is the fact that the series and loop lines currently used on the same storey could not be adequately modelled so far.

In order to be able to calculate the exact pressure loss based on the system, the resistance coefficients of the shaped and connecting pieces must now also be measured and taken into account depending on the product.

Planning reliability through differentiated calculation

In the current version, we provide you with a comprehensive update to the latest version of DIN 1988-300.

All zeta values in Uponor installation systems are stored in accordance with standards. For product-neutral tenders, the reference values for resistance coefficients from the Annex to the standard can be taken into account. The software supports the simple, automated definition of usage units and the dimensioning and display of loop-through installations. In addition to schematic representations, the current HSE version also allows planning in the ground plan. This makes it easy to generate Datanorm BOMs and tenders.

Scope of services

- Dimensioning of drinking water distribution systems according to DIN 1988-300
- Product-specific measured zeta values integrated
- Automated definition of usage units in floor plan and schema
- Calculation of the display of ring and row loop-through installations
- Quick overview of information by section (temperature circulation)
- Planning of decentralised tap water heating with fresh water installations (consideration of simultaneity in the hot water network)

8.3 Data for pipe network calculations

Uponor S-Press PLUS – zeta values*

Single resistance			S-Press	PLUS fittin	gs		S-Press PPSU	PLUS com	oosite fitting	gs made of
			Zeta values ζ				Zeta values ζ			
			DN 12	DN 15	DN 20	DN 25	DN 12	DN 15	DN 20	DN 25
			Pipe ou	ter diameter	OD mm		Pipe out	er diameter	OD mm	
			16	20	25	32	16	20	25	32
T-joint branch for current separation	TA	\rightarrow \rightarrow \rightarrow \downarrow_{v}	7,4	5,2	4,7	3,4	16,5	8,8	7,4	5,8
T-joint passage for current separation	TD	<u>→</u> →V ↓	2,3	1,2	1,1	0,7	4,4	2,8	2,4	1,2
T-joint counter-flow for current separation	TG	<u>← →</u> V †	7,6	5,4	5	4,1	17,1	9,1	7,9	6,2
T-joint branch for current merging	TVA		13,2	8,1	7,7	6,7	29,1	15,7	15,6	10,6
T-joint passage for current merging	TVD	$v \rightarrow \rightarrow$	26,4	21,2	17,1	14,7	58,2	32,7	30,4	20,9
T-joint counter-flow for current merging	TVG	v <u>→ ←</u> ↓	18	12,1	10,6	7,9	36	18,3	16,2	11,5
Bend 90°	B90	v ↑	4,1	2,6	2,2	1,6	_	_	_	_
Angle 90°	W90	_→V ↑	7,1	5,1	4,2	3,3	10,4	5,1	4,1	3,1
Angle/Bend 45°	W45	v,*/	_	_	2,3	1,3	_	_	_	_
Reduction	RED		1,6	0,7	1,1	_	_	_	_	
Wall bracket	WS	vţ	6,5	4,3	3,4	_	_	_	_	_
Double wall bracket passage	WSD	1∕\,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6,3	4,2	3,9	_	_	_	_	_
Double wall bracket branch	WSA	v1∕	4,3	4,2	5,5	_	_	_	_	_
Coupling/sleeve	К	→ ⊢,	1,9	1	0,8	0,5	3,4	1,7	1,6	0,8

* Product-related Uponor resistance coefficients according to DIN 1988-300 point 4.3 Individual resistances. The resistance coefficients (ζ values) cited by the manufacturers as calculated in accordance with DVGW Worksheet W 575 or equivalent procedures shall be taken into account.

Uponor S-Press – zeta values*

Single resistance			S-Press fittings	;	S-Press co	mposite fittin	gs made of F	PSU	
	Zeta values ζ		Zeta values	Zeta values ζ					
					DB 32	DN 40	DN 50	DN 65	
			Pipe outer dian	neter OD mm	Pipe outer	Pipe outer diameter OD mm			
			40	50	40	50	63	75	
T-joint branch for current separation	TA	\rightarrow	4,1	3,1	5,5	4,4	5,2	5,0	
T-joint passage for current separation	TD	$\xrightarrow{\rightarrow} \xrightarrow{\rightarrow} V$	0,7	0,4	1,0	0,7	1,2	1,2	
T-joint counter-flow for current separation	TG	<u>← →</u> v ↑	4,1	3,1	6,1	4,8	6,7	6,3	
T-joint branch for current merging	TVA	$\xrightarrow{\vee \downarrow }$	7,8	5,6	12,1	9,4	12,6	11,8	
T-joint passage for current merging	TVD	\downarrow $\vee \rightarrow \rightarrow$	13,8	11,4	22,8	18,8	25,5	26,0	

Single resistance			S-Press fit	tings	S-Press of	omposite fitti	ngs made of F	PPSU
				sζ	Zeta valu	es ζ		
			DN 32	DB 40	DB 32	DN 40	DN 50	DN 65
			Pipe outer	diameter OD mm	Pipe oute	r diameter OD	mm	
			40	50	40	50	63	75
T-joint counter-flow for current merging	TVG	V <u>→ ←</u> ↓	12,2	10,9	12,4	9,7	13,5	12,7
Angle 90°	W90	v ↑	2,4	1,8	5,1	4,3	4,4	3,8
Angle/Bend 45°	W45	V,≉/ †	1,3	1,2	2,1	2,0	1,7	1,7
Reduction	RED		1,2	1,0	0,9	1,3	1,2	1,0
Coupling/sleeve	К	→ ⊢,	0,5	0,3	0,8	0,6	0,,6	0,6

* Product-related Uponor resistance coefficients according to DIN 1988-300 point 4.3 Individual resistances. The resistance coefficients (ζ values) cited by the manufacturers as calculated in accordance with DVGW Worksheet W 575 or equivalent procedures shall be taken into account.

Uponor RS – zeta values*

			Zeta value	sζ				
			DN 32	DN 40	DN 50	DN 65	DN 80	DN 100
			Pipe outer	diameter OD i	nm			
			40	50	63	75	90	110
T-joint branch for current separation	TA	\rightarrow	1,0	1,4	2,5	3,2	2,8	2,8
T-joint passage for current separation	TD	$\frac{\longrightarrow}{\downarrow}$	0,7	0,5	1,0	0,7	0,2	0,2
T-joint counter-flow for current separation	TG	<u>←</u> →V ↑	3,5	3,0	3,1	4,1	4,0	4,0
T-joint branch for current merging	TVA	v↓ → →	5,5	4,5	4,0	3,5	3,5	3,5
T-joint passage for current merging	TVD	$v \rightarrow \rightarrow$	10,0	9,0	8,0	7,0	6,0	6,0
T-joint counter-flow for current merging	TVG	v <u>→ ←</u> ↓	8,0	7,0	6,0	5,0	5,0	5,0
Angle 90°	W90	v ↑	_	_	2,3	3,1	2,4	2,4
Angle/Bend 45°	W45	v		_	1,0	1,0	1,0	1,5
Reduction	RED		0,6	0,5	0,5	0,3	0,0	_
Coupling/sleeve	К	_⊣⊢,	_	_	0,8	0,6	0,0	0,0

* Product-related Uponor resistance coefficients according to DIN 1988-300 point 4.3 Individual resistances. The resistance coefficients (ζ values) cited by the manufacturers as calculated in accordance with DVGW Worksheet W 575 or equivalent procedures shall be taken into account.

Dimensioning of sections (design tables)

The selection of the pipe dimension for a section can be determined from the following pipe friction pressure gradient tables described as functions of peak flow rate for cold tap water (10 $^{\circ}$ C), or from the pressure loss diagram.

The required rules for the dimensioning of pipes, the required minimum flow pressures and calculated flows can be found in DIN 1988-300.

Pipe dimensions 14 — 20 mm

v – m/s R – mbar/m 0.05 0.07 0.11 0.21 0.16 0.41 0.21 0.66 0.26 0.97
0.11 0.21 0.16 0.41 0.21 0.66
0.16 0.41 0.21 0.66
0.21 0.66
0.26 0.97
0.32 1.32
0.37 1.72
0.42 2.16
0.48 1.91
0.53 3.17
0.79 6.39
1.06 10.54
1.32 15.56
1.59 21.41
1.85 28.07
2.12 35.52
2.38 43.72
2.65 52.67
2.91 62.35
3.18 72.74
3.44 83.84
3.71 95.64
3.97 108.13
4.24 121.29
4.50 135.12
4.77 149.62
5.03 164.77
5.30 180.57
5.56 197.02
5.83 214.11
6.09 231.84
6.36 250.19
6.36 250.19 6.62 269.17
- - - - -

 \dot{V}_{s} = Peak flow rate in litres/second according to DIN 1988-300

R = Pipe friction pressure gradient in millibar/metre (1 mbar ^= 1 hPa)

v = Flow velocity in metres/second

Correction factors for other water temperatures

Water temperature [°C]	10	15	20	25	30	35	40	45	50	55	60
Conversion factor	1.000	0.983	0.967	0.952	0.938	0.933	0.918	0.904	0.890	0.873	0.861

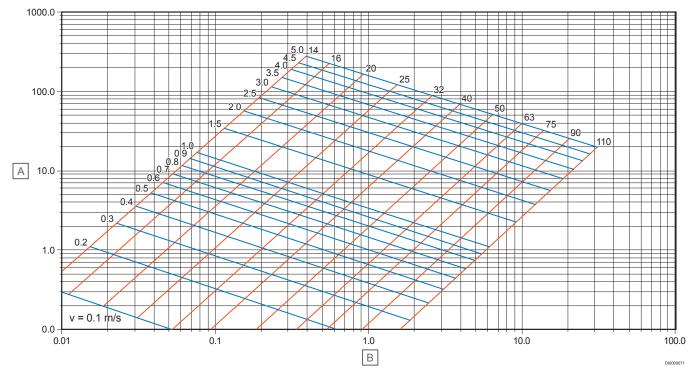
Pipe dimensions 25 — 50 mm

OD x s (ID) — V/I	25 x 2,5 mm (20 mm) — (32 x 3 mm (25 mm) —	0.53 l/m	40 x 4 mm (32 mm) —	0.80 l/m	50 x 4,5 mm (40 mm) — 1.32 l/m		
Ż₅ — I/s	v — m/s	R — mbar/m	v — m/s	R — mbar/m	v — m/s	R — mbar/m	v — m/s	R — mbar/m	
0.10	0.32	0.95	0.19	0.28	0.12	0.10	0.08	0.03	
0.20	0.64	3.15	0.38	0.91	0.25	0.34	0.15	0.11	
0.30	0.95	6.38	0.57	1.84	0.37	0.69	0.23	0.21	
0.40	1.27	10.55	0.75	3.03	0.50	1.13	0.30	0.35	
0.50	1.59	15.62	0.94	4.48	0.62	1.67	0.38	0.52	
0.60	1.91	21.55	1.13	6.17	0.75	2.30	0.45	0.71	
0.70	2.23	28.30	1.32	8.10	0.87	3.01	0.53	0.93	
0.80	2.55	35.86	1.51	10.25	0.99	3.81	0.61	1.17	
0.90	2.86	44.20	1.70	12.63	1.12	4.69	0.68	1.44	
1.00	3.18	53.30	1.88	15.22	1.24	5.65	0.76	1.73	
1.10	3.50	63.16	2.07	18.02	1.37	6.69	0.83	2.05	
1.20	3.82	73.76	2.26	21.03	1.49	7.80	0.91	2.39	
1.30	4.14	85.08	2.45	24.24	1.62	8.99	0.98	2.76	
1.40	4.46	97.12	2.64	27.66	1.74	10.25	1.06	3.14	
1.50	4.77	109.88	2.83	31.28	1.87	11.59	1.14	3.55	
1.60	5.09	123.33	3.01	35.09	1.99	13.00	1.21	3.98	
1.70	-	-	3.20	39.10	2.11	14.48	1.29	4.43	
1.80	-	-	3.39	43.30	2.24	16.03	1.36	4.90	
1.90	-	-	3.58	47.69	2.36	17.65	1.44	5.40	
2.00	-	-	3.77	52.27	2.49	19.34	1.51	5.91	
2.10	-	-	3.96	57.04	2.61	21.10	1.59	6.45	
2.20	-	-	4.14	61.99	2.74	22.92	1.67	7.00	
2.30	_	-	4.33	67.13	2.86	24.82	1.74	7.58	
2.40	-	-	4.52	72.45	2.98	26.78	1.82	8.18	
2.50	-	-	4.71	77.96	3.11	28.81	1.89	8.79	
2.60	-	-	4.90	83.64	3.23	30.90	1.97	9.43	
2.70	-	-	5.09	89.50	3.36	33.06	2.05	10.09	
2.80	-	-	-	-	3.48	35.28	2.12	10.76	
2.90	-	-	-	-	3.61	37.57	2.20	11.46	
3.00	-	-	-	-	3.73	39.93	2.27	12.17	
3.50	-	-	-	-	4.35	52.65	2.65	16.04	
4.00	_	-	-	-	4.97	66.93	3.03	20.37	
4.50	_	-	-	_	5.60	82.73	3.41	25.17	
5.00	-	-	-	-	-	-	3.79	30.41	
5.50	-	-	-	_	_	-	4.17	36.09	
6.00	-	-	-	-	-	-	4.54	42.22	
6.50	-	-	-	-	-	-	4.92	48.77	
7.00	-	-	-	-	-	-	5.30	55.74	
7.50	_	_	-	_	-	_	5.68	63.13	
3.00	_	_	-	_	-	-	6.06	70.94	
3.50	_	_	_	_	-		6.44	79.16	
9.00	_	_	-		-	_	6.82	87.78	

 \dot{V}_{s} = Peak flow rate in litres/second according to DIN 1988-300

R = Pipe friction pressure gradient in millibar/metre (1 mbar ^= 1 hPa)

v = Flow velocity in metres/second


Pipe dimensions 63 — 110 mm

OD x s (ID) — V/I	63 x 6 mm (51 mm) —	2.04 l/m	75 x 7,5 mm (60 mm) — 1		90 x 8,5 mm (73 mm) — 4		110 x 10 mm (90 m) — 6.36 l/m		
Ż₅ — I/s	v — m/s	R — mbar/m	v — m/s	R — mbar/m	v — m/s	R — mbar/m	v — m/s	R — mbar/m	
1.00	0.49	0.61	0.35	0.28	0.24	0.11	0.16	0.04	
1.25	0.61	0.91	0.44	0.42	0.30	0.17	0.20	0.06	
1.50	0.73	1.25	0.53	0.58	0.36	0.23	0.24	0.08	
1.75	0.86	1.65	0.62	0.76	0.42	0.30	0.28	0.11	
2.00	0.98	2.08	0.71	0.96	0.48	0.38	0.31	0.14	
2.25	1.10	2.57	0.80	1.18	0.54	0.46	0.35	0.17	
2.50	1.22	3.10	0.88	1.43	0.60	0.56	0.39	0.21	
2.75	1.35	3.67	0.97	1.69	0.66	0.66	0.43	0.24	
3.00	1.47	4.28	1.06	1.97	0.72	0.77	0.47	0.28	
3.25	1.59	4.94	1.15	2.27	0.78	0.89	0.51	0.33	
3.50	1.71	5.64	1.24	2.59	0.84	1.01	0.55	0.37	
3.75	1.84	6.38	1.33	2.93	0.90	1.15	0.59	0.42	
4.00	1.96	7.16	1.41	3.29	0.96	1.29	0.63	0.47	
4.25	2.08	7.98	1.50	3.66	1.02	1.43	0.67	0.53	
4.50	2.20	8.84	1.59	4.06	1.08	1.59	0.71	0.58	
4.75	2.33	9.73	1.68	4.47	1.13	1.75	0.75	0.64	
5.00	2.45	10.67	1.77	4.90	1.19	1.92	0.79	0.70	
6.00	2.94	14.80	2.12	6.79	1.43	2.65	0.94	0.97	
7.00	3.43	19.53	2.48	8.95	1.67	3.49	1.10	1.28	
3.00	3.92	24.84	2.83	11.38	1.91	4.44	1.26	1.63	
9.00	4.41	30.71	3.18	14.07	2.15	5.49	1.41	2.01	
10.00	4.90	37.15	3.54	17.01	2.39	6.63	1.57	2.43	
11.00	5.38	44.13	3.89	20.20	2.63	7.87	1.73	2.88	
12.00	_	-	4.24	23.63	2.87	9.21	1.89	3.37	
13.00	_	-	4.60	27.31	3.11	10.63	2.04	3.89	
14.00	_	-	4.95	31.23	3.34	12.16	2.20	4.45	
15.00	-	-	5.31	35.38	3.58	13.77	2.36	5.03	
16.00	-	_	5.66	39.77	3.82	15.47	2.52	5.65	
17.00	-	_	6.01	44.39	4.06	17.27	2.67	6.31	
18.00	_	_	-	-	4.30	19.15	2.83	6.99	
19.00	_		-	_	4.54	21.12	2.99	7.71	
20.00	_		-		4.78	23.17	3.14	8.46	
21.00	_		-		5.02	25.31	3.30	9.24	
22.00	_		-		5.26	27.54	3.46	10.05	
23.00	_		-		5.50	29.86	3.62	10.89	
24.00	-		_	_	5.73	32.25	3.77	11.77	
25.00			-		-	-	3.93	12.67	
26.00					_		4.09	13.60	
27.00	-		_		_	-	4.09	13.00	
28.00	-	-	-	-	-	-	4.40	15.56	
29.00	-	-	-	-	-	-	4.40	16.58	
30.00	-	-	-	-	-	-	4.50	17.63	

 \dot{V}_{s} = Peak flow rate in litres/second according to DIN 1988-300

R = Pipe friction pressure gradient in millibar/metre (1 mbar ^= 1 hPa)

v = Flow velocity in metres/second

Pressure loss diagram, cold tap water (10 °C)

Item	Description	Item	Description
A	Pipe friction pressure gradient R [mbam/m]	В	Volume flow rate Vs [l/s]

Correction factors for other water temperatures

Water temperature [°C]	10	15	20	25	30	35	40	45	50	55	60
Conversion factor	1.000	0.983	0.967	0.952	0.938	0.933	0.918	0.904	0.890	0.873	0.861

9 Leak test, initial filling and commisioning

9.1 Pressure and leak testing

Legal notice:

Note

Pressure tests are ancillary services under a work contract and part of the Contractor's contractual performance, even if not explicitly mentioned in the description of services.

According to current standards a pressure test must be carried out before the system is put into operation.

Just as for any drinking water distribution, the Uponor installation system must also undergo a pressure test in accordance with DIN EN 806-4 or ZVSHK leaflet "Leak tests of drinking water distribution systems with compressed air, inert gas or water". Before the pressure test, it must be ensured that all components of the installation are freely accessible and visible, for example in order to locate incorrectly installed fittings. If the pipeline system is to remain unfilled after a pressure test (for example because regular water replacement cannot be guaranteed after seven days at the latest), a pressure test with compressed air or inert gases is recommended.

Leak test with compressed air or inert gas

After a leak test with water, residual water can remain in some sections of the pipeline network despite thorough emptying of the system – in case of prolonged stagnation, this is an ideal breeding ground for bacteria. For this reason, leak testing with oil-free compressed air or inert gas (usually nitrogen or carbon dioxide) is recommended, especially in buildings with high hygiene requirements such as hospitals, retirement homes or sport facilities. The system is first subjected to a leak test and only then – if possible only shortly before commissioning – is it flushed and filled with filtered tap water for the first time.

A pressure test with compressed air or inert gases is carried out in two steps, the tightness test and the load test, taking recognised engineering practices into consideration. For both tests, it is important

Leak test with water

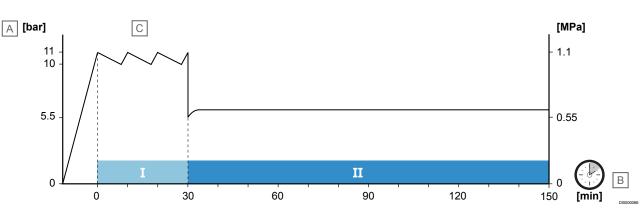
to wait for the temperature compensation and steady-state condition after the pressure build-up, after which the test period begins. Appliances, drinking water heaters, fittings or pressure vessels must be disconnected from the pipelines before a pressure test with air if their volume can affect safety and testing accuracy. All lines must be directly sealed using metal plugs, metal washers or blind flanges which can withstand the test pressure. Closed shut-off valves are not sufficient as tight shut-offs.

Leak test

Before the leak test, all pipe connections must be visually inspected. The manometer used in the test must have a corresponding accuracy of 1 mbar in the indication range for the pressures to be measured. The system is subjected to a test pressure of 150 mbar (150 hPa). For a system volume of up to 100 litres, the test time must be at least 120 minutes. The required time must be extended by a further 20 minutes per additional 100 litres. No leakage must occur at the connectors during the test.

Load test

Following the leak test, the load test is carried out. Here the pressure is increased to max. 3 bar (for pipe size OD \leq 63 mm) or max. 1 bar (for pipe size OD > 63 mm). For a system volume of up to 100 litres, the test time must be at least 10 minutes.


Leak test report

The leak test must be documented in a leak test report by the responsible specialist, taking into account the materials used. The tightness of the system must be verified and confirmed.

This report is available at the Uponor services download center.

https://www.uponor.com/doc/1120118

Item	Description
А	Test pressure [bar]
В	Test time [minutes]
С	Maintain pressure, pump

Preparing for the leak test

Before performing a leak test with water, a visual inspection of all pipe connections completed but not yet concealed must be carried out. The pressure gauge must be connected to the lowest point of the installation to be tested. Only measuring instruments that can reliably register a pressure difference of 0.1 bar may be used. The installation must be filled with filtered tap water (particle size \leq 150 µm), vented and protected from freezing. Shut-off devices upstream and downstream of heat generators and storage tanks must be closed so that the test pressure is kept away from the rest of the installation.

If there are significant differences (>10 K) between ambient temperature and the water temperature, wait 30 minutes after applying system test pressure to allow temperature equalisation. The pressure must be maintained for at least 10 minutes. There must be no drop in pressure and no visible indication of leakage.

Uponor fittings with unpressed-untight function

In order to detect a leaking unpressed connection, Uponor fittings with "unpressed-untight" function must be tested at 3 bar for 15 minutes before the actual leak test.

Carrying out the leak test

The pipe network must first be subjected to a test pressure 1.1 times the operating pressure (relative to the lowest point of the system). The operating pressure according to DIN EN 806-2 is 10 bar (1 MPa). Accordingly, a test pressure of 11 bar (1.1 MPa) is required. Afterwards an inspection of the tested pipe section must be carried out in order to detect possible leaks.

After 30 minutes test time, reduce the pressure to 5.5 bar (0.55 MPa), corresponding to half the initial test pressure, by draining water. The test time at this pressure is 120 minutes. No leakage may be detectable during this test period. The test pressure at the manometer must remain constant ($\Delta p = 0$). If a pressure drop occurs during the test period, there is a leak in the system. Maintain pressure and locate the leak. The defect must be repaired and then the leak test must be repeated.

Leak test report

The leak test must be documented in a leak test report by the responsible specialist, taking into account the materials used. The tightness of the system must be verified and confirmed.

This report is available at the Uponor services download center.

https://www.uponor.com/doc/1120119

9.2 Flushing of Uponor drinking water distribution

Note

Uponor tap water lines must be flushed with the local supply pressure and in accordance with DIN EN 806-4, Section 6.2.2, unless a different flushing procedure is contractually agreed or required.

The tap water used for flushing must be filtered (filter according to DIN EN 13443-1).

Flushing must only take place immediately before the actual start-up.

To ensure unrestricted operational safety, the flushing process must remove contaminants and assembly residues from the internal surfaces of the pipes and system components. It secures tap water quality and prevents corrosion damage as well as malfunctions of valves or equipment.

The flushing procedure

The procedure is based on a pulsating current of water and air and is described in more detail in the technical rules for drinking water distribution systems, DIN EN 806-4 Section 6.2.3. Suitable flushing equipment must be used for this purpose. The flushing procedure should be used when a sufficient flushing effect cannot be expected when flushing with water.

Flushing method with water

Uponor tap water lines must be flushed to the local supply pressure using the water flushing procedure in accordance with DIN EN 806-4, Section 6.2.2, unless another flushing procedure is contractually agreed or required. The procedure for pipeline flushing corresponds to the specifications in the ZVSHK brochure "Flushing, disinfecting and commissioning drinking water distribution systems". This brochure is available from the Zentralverband Sanitär Heizung Klima, Rathausstrasse 6, 53757 St. Augustin and applies to drinking water distribution systems according to DIN 1988 and DIN EN 806. Further details and information on the flushing procedure with water can be found in the leaflet. The tap water used for flushing must be filtered (filter according to DIN EN 13443-1).

Points to consider:

- Sensitive fittings (such as solenoid valves, flush valves, thermostatic fittings etc.) and apparatus (such as water heaters) should only be installed after flushing. That prevents damage caused by contaminants and assembly residues.
- Aerators, jet regulators, flow-limiters, shower heads and hand showers must be disassembled during flushing if valves are already installed.
- For in-wall thermostatic fittings and other sensitive fittings which cannot be removed during flushing, the installation instructions of the manufacturer must be followed.
- All maintenance fittings, floor shut-offs and preliminary shut-offs (such as corner valves) must be fully open.
- Any built-in pressure reducers must be fully open and are only adjusted after flushing.
- Built-in fine sieves in front of fittings that cannot be removed or bridged must be cleaned after flushing.

Depending on the size of the system and the line layout, flushing must be carried out in sections.

Maintain a flushing direction from the main shut-off valve, flushing each section line by line (from nearest to the most distant). Starting from the end of the riser, flushing is carried out floor by floor.

Fully open the tapping points (see table in the following flushing protocol for the minimum number) within the floor and individual supply lines for at least 5 minutes each, one after the other.

Within one storey, the tapping points are fully opened, starting at the tapping point furthest from the riser. After a flushing time of 5 minutes at the last opened flushing point, the taps are closed one after the other in reverse order.

Flushing protocol

The flushing process must be documented by the responsible specialist in a flushing protocol.

This report is available at the Uponor services download center.

https://www.uponor.com/doc/1120120

10 Handover and documentation

According to the requirements of the Drinking Water Ordinance, the operator and other owners of the drinking water distribution system are responsible for the proper operation of the system. In order to fulfill his obligations, the system manufacturer is obliged to instruct the operator in the system. In addition, at least the following documents are to be handed over to him:

- Room data sheet with description of use and concept of the drinking water distribution system
- Commissioning and instruction protocol
- Leak test and flushing protocols
- Protocol for regulating the hot water system
- · Test results for the cold and hot water installation
- Inspection and maintenance plan (DIN EN 806, part 5)
- · Manufacturer's documents, assembly and operating documents
- Plans and floor plans of the building with system diagram
- If applicable, information on substances that are added to tap water in case of increased hygiene requirements (VDI/DVGW 6023)
- Maintenance and hygiene plan
- After commissioning, the following documents must also be submitted to the responsible health authority:
 - Flushing protocols and protocols for regulating the hot water installation
 - Test results of sampling (DVGW W 551)

11 Heating installation

11.1 System description

The versatile range of radiator connection components from Uponor includes everything that is required for a safe and quick connection from the heat source to the radiator. Uponor offers a complete range of products for all radiator connection variants - from the traditional single-pipe system with thermostatic valves to a complex distribution system with zone control.

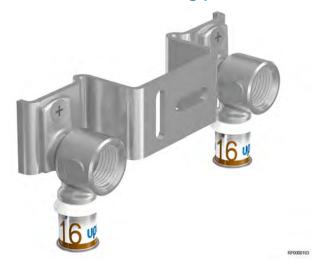
With the Uponor composite pipe system, all common radiator connections can be realised – both from the floor and comfortably from the wall. The system also includes special components for the radiator connection from the baseboard, an important aspect in renovations, for example. In addition, pipes and components preinsulated at the factory in accordance with EnEV requirements, such as the Uponor Smart radi connection block and the Uponor Smart radi cross fitting for S-Press in an insulation box, enable rapid construction progress and a high level of assembly safety.

Heating installation

- · Wide range of components for different installation options
- Simple planning, low pressure loss
- Simple pressure drop determination and dimensioning

11.2 Uponor main components for heating (overview)

Uponor radiator adapters and T-joints



Tin-plated brass fittings with Uponor S-Press PLUS connection and coated or bare copper pipe 15×1 mm in lengths 365 and 1115 mm. Optionally for Uponor composite pipes 14 or 16 mm. Radiator connection via Uponor Smart radi compression adapter Cu.

Uponor radiator cross fitting in insulation box

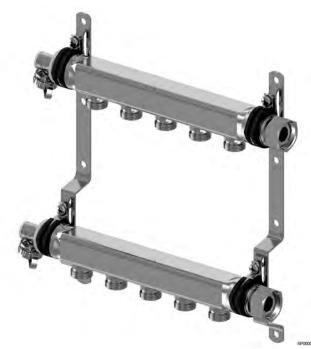
Uponor radiator mounting plate

Factory pre-fabricated unit for radiator connection from unfinished floor, consisting of two Uponor S-Press PLUS wall brackets 16 — Rp¹/₂, mounted in anti-twist manner on Uponor mounting plate, optionally with 35 or 50 mm centre distance.

RP0000181

Factory pre-insulated fitting made of coated brass with Uponor S-Press PLUS joint technology. Enables the crossing-free connection of radiators on the unfinished floor. Two-part insulation box made of EPP (expanded polypropylene) with 13 mm insulation, WLG 035. Meets EnEV requirements in the area of pipe crossings and feedthroughs (50 % insulation).

Uponor Smart radi connection block


Wall connection cut out with polystyrene thermal insulation and removable protective cap. Insulation box in fire class E according to DIN EN 13501-1. Suitable for all common valve radiators. Insulation box width: 100 mm

Uponor baseboard adapter

Connection kit made of coated brass and Uponor S-Press PLUS connection for baseboard installation without chiselling out the wall. Optionally for Uponor composite pipes with 16 or 20 mm outer diameter. Radiator connection with Uponor Smart Base angle.

Uponor manifold

Complete stainless steel manifold for the connection of 2-12 radiators. Primary connections 1" FT with flat seal. Heating circuit connection $\frac{3}{4}$ " external thread with euro-cone.

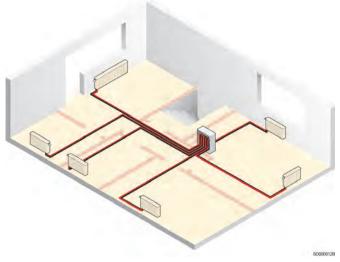
Uponor Uni fittings and transitions

Fittings range for $\frac{1}{2}$ " (Uni-C) or $\frac{3}{4}$ " (Uni-X) thread transitions

Uponor Smart radi connection kits

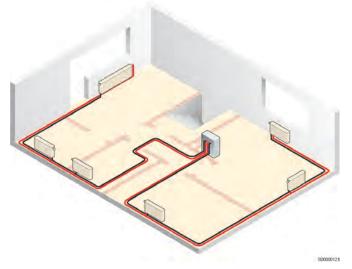
Coated brass fitting. Pressure screw with MT with support sleeve and clamping ring, O-ring made of EPDM. Suitable connection kits for Heimeier, Danfos or Oventrop radiator valves

Uponor Smart radi accessories


Fixing and assembly components for installing the Uponor Smart radi system

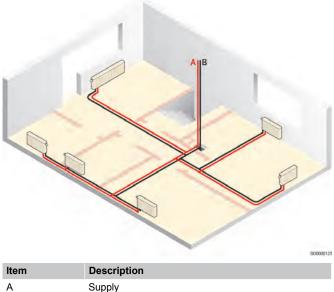
11.3 Planning principles for heating installation

Connection options

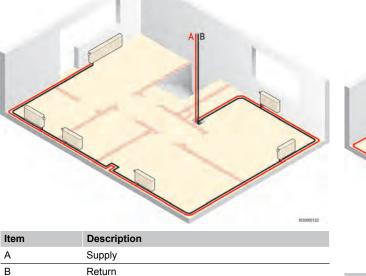

Uponor installation systems contain all the components required for radiator connection. The most common connection variants are shown below. When installing the systems, the system-specific special features and installation guidelines must be observed. These can be found in the respective technical system descriptions in this manual and in the associated installation instructions.

Two-pipe system with central heating manifold

With the two-pipe system with central heating manifold, each radiator is connected individually. A heat meter can be mounted on the heating manifold, allowing heat to be measured for each apartment.

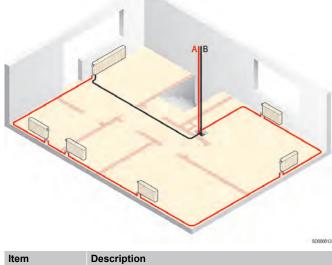

Two-pipe system with T-joint and elbow radiator connection

With the two-pipe system with T-joint radiator connection, loop lines with one or more radiators are connected individually from a central manifold/collector. A heat meter can be mounted on the heating manifold, allowing heat to be measured for each apartment.


Two-pipe system as loop line

Two-pipe system as classic distribution system

В Return In the two-pipe system as a classic distribution system with T-joints, almost all pipe layouts and combinations are possible. Line layout for connecting the radiators begins and ends at the riser.


Single-pipe system

With the two-pipe system as a loop line, the pipe routing for connecting the radiators to the riser begins and ends.

А

В

In the single-pipe system, the pipe routing for connecting the radiators begins and ends at the riser.

11.4 Examples of radiator connections

Supply

Return

А

В

With the Uponor composite pipe system, all common radiator connections can be realised - both from the floor and comfortably from the wall. The system also includes special components for the radiator connection from the baseboard, an important aspect in renovations, for example. The most common connection variants are shown below with the components required for each radiator.

Two-pipe heating with manifold system

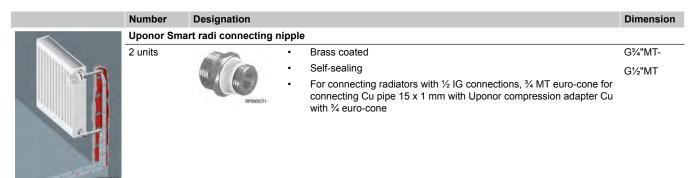
Uni-X screw connection MLC from the wall

	Number	Designation			Dimension		
	Uponor Uni-X screw connection MLC						
	2 units	47	•	Two-part screw connection made of brass, with tin-plated union nut and pressure sleeve	14-¾"FT Euro		
		RPDICU191	•	For the direct connection of Uponor composite pipes, Uni Pipe PLUS and MLC, to $\%$ FT moulded euro-cone parts as well as manifold H	16-¾"FT Euro		
			•	Internal thread according to DIN EN ISO 228-1	20-¾"FT		
			•	Connect without deburring	Euro		
HEADER							

Uponor S-Press adapter nipple from the wall

	Number	Designation			Dimension		
\frown	Uponor S-Press PLUS adapter nipple						
Inc	2 units	Maria	•	Flow optimised fitting	14-R1⁄2"MT		
		11111 (STO	•	Made of dezincing resistant brass, according to UBA positive list, tin- plated	16-R1⁄2"MT		
C. C		RPC0001192		place	20-R½"MT		

Uponor Smart radi connection kit from the wall


	Number	Designation			Dimension			
\frown	Uponor Smart radi connection kit Danfoss							
Ins	2 units	RPUCCOS	•	Brass coated	16-G½"MT			
6			•	Pressure screw with male thread with support sleeve and clamping ring, suitable for Danfoss radiator valves with female thread				
			•	O-ring made of EPDM				
	Uponor Smart radi connection kit Heimeier							
C-T	2 units	FACTORIA	•	Brass coated	16-G½"MT			
			•	Pressure screw with male thread with support sleeve and clamping ring, suitable for Heimeier radiator valves with female thread				
REACCOUNT			•	O-ring made of EPDM				
	Uponor Sn	nart radi connection I	kit Ov	entrop				
	2 units	~	•	Brass coated	16-G1⁄2"MT			
		SO CO	•	Pressure screw with male thread with support sleeve and clamping ring, suitable for Oventrop radiator valves with female thread				
		RP000208	•	O-ring made of EPDM				

Radiator with Uponor S-Press PLUS radiator elbow adapter from the wall

Variant 1

	Number	Designation			Dimension						
~	Uponor S-	Uponor S-Press PLUS radiator elbow adapter									
line	2 units	(11)	•	Made of brass and coated copper tube	14-15CU						
			•	The 15 mm copper pipe can be connected to the radiator using the	l=350mm						
		1		Uponor Smart radi Cu compression adapter.	16-15CU I=350mm						
		RUGGEO RUGGEO			16-15CU I=1000mm						
RP0000134	Uponor Sn	Uponor Smart radi compression adapter Cu									
	2 units		•	With G ^{3} euro-cone elastically sealing for the connection of coated copper pipes 15 x 1 mm of Uponor elbow adapters/T-joints to a tap block, radiator or Uponor radiator connecting nipple with G ^{3} MT euro-cone	15CU-¾" Euro						
		RF0000210	•	Union nut brass coated, clamping ring brass bright and EPDM sealing cone							
			•	Ribbed union nut with wrench size 30							

Variant 2, like variant 1, but additionally

Valve radiator with Uponor S-Press PLUS radi mounting plate and Uponor Smart radi connecting pipes from the wall

	Number	Designation			Dimension					
~	Radi moun	Radi mounting plate								
	1 unit		•	Prefabricated unit, consisting of two Uponor press wall brackets 16 - Rp ¹ / ₂ , pre-assembled at the factory on a Uponor mounting plate 35/50 mm, torsion-proof	16-Rp½"FT c/c 35 mm					
		16-16-16-1 16-1 16-1 16-1			16-Rp½"FT c/c 50 mm					
	Radi conne	Radi connection pipe								
	2 units		•	Made of coated copper tube	G1∕₂"MT -					
A PRODUCT	4		•	Copper pipe 15 x 1 mm with self-sealing thread for radiator connection	15CU I=350mm					
		RF0000213	•	Suitable for all Uponor press wall brackets and press wall brackets with internal thread ${\rm Rp}{}^{\prime\!\prime}_{\!2}$						
			•	Connection to valve block, radiator or Uponor radiator connecting nipple is possible using the Uponor Cu compression adapter with euro-cone						

Number	Designation		Dimension
Radi compr	ression adapter Cu		
2 units		 With G³/₄ euro-cone elastically sealing for the connection of coated copper pipes 15 x 1 mm of Uponor elbow adapters/T-joints to a tap block, radiator or Uponor radiator connecting nipple with G³/₄ MT euro-cone 	15CU-¾" Euro
	Union nut brass coated, clamping ring sealing cone	Chion hat brass coated, clamping hing brass bright and Er Div	
		Ribbed union nut with wrench size 30	

Valve radiator with Uponor Smart radi connection block from the wall

	Number	Designation		Dimension					
\frown	Uponor Sm	art radi connection bl	lock						
	1 unit	ROOZIN	 Made of polystyrene with removable protective cap Insulation box in fire class E according to DIN EN 13501-1 Suitable for all common valve radiators 	16 h = 215 mm 16 h = 240 mm					
10 m	Uponor S-F	Press PLUS coupling							
RPCORE/	2 units	RECEIPTION APPROXIMATION APPROXIMATICA APPRO	 Flow optimised fitting Made of dezincing resistant brass, according to UBA positive list, tin- plated 	16-16					
	Uponor S-Press PLUS coupling								
	2 units	6	Two-part screw connection made of brass, with tin-plated union nut and pressure sleeve Sec the direct expression of Linear expression plate. Up Directly 10	16-¾"FT Euro					
		RP000191	 For the direct connection of Uponor composite pipes, Uni Pipe PLUS and MLC, to ³/₄ MT moulded euro-cone parts as well as manifold H 						
			 Internal thread according to DIN EN ISO 228-1 Connect without deburring 						

Radiator with Uponor S-Press PLUS radiator elbow adapter from the floor

Variant 1

	Number	Designation		Dimension						
\frown	Uponor S-I	Uponor S-Press PLUS radiator elbow adapter								
	2 units	(III)	Made of brass and coated copper tube	14-15CU						
			• The 15 mm copper pipe can be connected to the radiator using the	l=350 mm						
		N.	Uponor Smart radi Cu compression adapter.	16-15CU I=350 mm						
		Records		16-15CU I=1000 mm						
RP000019	Uponor Sm	nart radi compression a	idapter Cu							
	2 units		 With G³/₄ euro-cone elastically sealing for the connection of coated copper pipes 15 x 1 mm of Uponor elbow adapters/T-joints to a tap block, radiator or Uponor radiator connecting nipple with G³/₄ MT euro-cone 	15CU-¾" Euro						
		R#0000210	 Union nut brass coated, clamping ring brass bright and EPDM sealing cone 							
			 Ribbed union nut with wrench size 30 							

Variant 2, like variant 1, but additionally

Number	Designation			Dimension
Uponor Sma	art radi connecting n	ipple		
2 units	1000	•	Brass coated	G¾"MT-
		•	Self-sealing	G1⁄2"MT
	RP1000271	•	For connecting radiators with $\frac{1}{2}$ IG connections, $\frac{3}{4}$ MT euro-cone for connecting Cu pipe 15 x 1 mm with Uponor compression adapter Cu with $\frac{3}{4}$ euro-cone	

Valve radiator with Uponor Uni-X screw MLC connection and Uponor Smart radi connection kit

	Number	Designation			Dimension				
\frown	Uponor Smart radi connection kit								
line	1 unit	11	•	Made of plastic	16				
			•	For quick, clean fixing of Uponor composite pipes 16 x 2 mm to the radiator					
		PP000276	•						
REPORTED	Uponor Un	i-X screw connection	MLC	;					
	2 units	43	•	Two-part screw connection made of brass, with tin-plated union nut and pressure sleeve	14-¾"FT Euro				
			•	For the direct connection of Uponor composite pipes, Uni Pipe PLUS and MLC, to $^{3}\!$ MT moulded euro-cone parts as well as manifold H	16-¾"FT Euro				
		RP0000191	•	Internal thread according to DIN EN ISO 228-1	20-¾"FT				
			•	Connect without deburring	Euro				

Two-pipe heating with loop line, radiator connections from below

Valve radiator with Uponor S-Press PLUS radiator connection T-adapter

Variant 1

	Number	Designation			Dimension
\frown	Uponor S-Pr	ess PLUS radiator 1	Г-ada	pter	
Illin	2 units	1	•	Made of brass and offset coated copper tube	16-15CU-16
		T	•	The 15 mm copper pipe can be connected to the radiator using the	l=350 mm
		BP000217		Uponor Smart radi Cu compression adapter.	20-15CU-20 I=350 mm
and the second	Uponor Sma	rt radi compression	n ada	pter Cu	
A Second	2 units		•	With G^{3}_{4} euro-cone elastically sealing for the connection of coated copper pipes 15 x 1 mm of Uponor elbow adapters/T-joints to a tap block, radiator or Uponor radiator connecting nipple with G^{3}_{4} MT euro-cone	15CU-¾" Euro
		RF0000210	•	Union nut brass coated, clamping ring brass bright and EPDM sealing cone	
			•	Ribbed union nut with wrench size 30	

Variant 2, like variant 1, but additionally

Number	Designation			Dimension
Uponor Sma	art radi connecting r	nipple		
2 units		•	Brass coated	G¾"MT-
		•	Self-sealing	G½"MT
	RF0000211	•	For connecting radiators with $\frac{1}{2}$ IG connections, $\frac{3}{4}$ MT euro-cone for connecting Cu pipe 15 x 1 mm with Uponor compression adapter Cu with $\frac{3}{4}$ euro-cone	

Valve radiator with the Uponor Smart radi connection block from the wall

	Number	Designation			Dimension		
\frown	Uponor Sma	art radi connection b	lock				
	1 unit		•	Made of polystyrene with removable protective cap Insulation box in fire class E according to DIN EN 13501-1	16 h = 215 mm		
		NOCCEM	•	Suitable for all common valve radiators	16 h = 240 mm		
	Uponor S-Press PLUS radiator cross fitting insulated with insulation box						
	1 unit		•	Made of tin-plated brass	16-16-16		
artour		and at	•	For crossing-free, pre-insulated connection of a radiator on the unfinished floor	20-16-16		
		RP000218	•	Including EPP insulation box, two-part 13 mm insulation, thermal conductivity 0.035 W/(m*K). Meets EnEV requirements in the area of pipe crossings and feed-throughs!	20-16-20 20-20-20		
			•	Dimensions of the insulation box (L x W x H): 115 x 115 x 55 mm			
	Uponor Uni-	X screw connection	MLC				
	2 units	47	•	Rwo-part screw connection made of brass, with tin-plated union nut and pressure sleeve	16-¾"FT Euro		
			•	For the direct connection of Uponor composite pipes, Uni Pipe PLUS and MLC, to $^3\!\!\!/_4$ MT moulded euro-cone parts as well as manifold H			
		RP0000191	•	Internal thread according to DIN EN ISO 228-1			
			•	Connect without deburring			

Connection of a valve radiator with the Uponor Smart radi connection block from the wall. Connection to the distribution line with the Uponor S-Press PLUS radiator cross fitting with insulation box

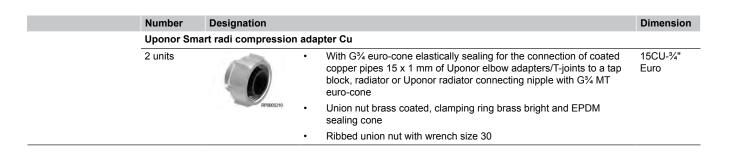
Two-pipe heating from the baseboard, radiator connections from below

Valve radiator with Uponor S-Press PLUS baseboard connection kit, adapter and Uponor Smart angle baseboard

	Number	Designation		Dimension
	Uponor S-F	Press PLUS connection	n kit adapter	
	1 pair	and the second s	 For the installation of baseboards without chiselling out the wall. For connection of Uponor composite pipes MLC/Uni Pipe PLUS to radiators with valves 	16-G½" MT-16
		1000	Thread according to DIN EN ISO 228-1	16-G½"
		0 9	Thread according to bird EIN 130 220-1	MT-20
		RP0000219		16-G½" MT-0
THE STATE				20-G½" MT-16
RP0000203				0-G1⁄2"
				MT-16
				20-G1⁄2"
				MT-20

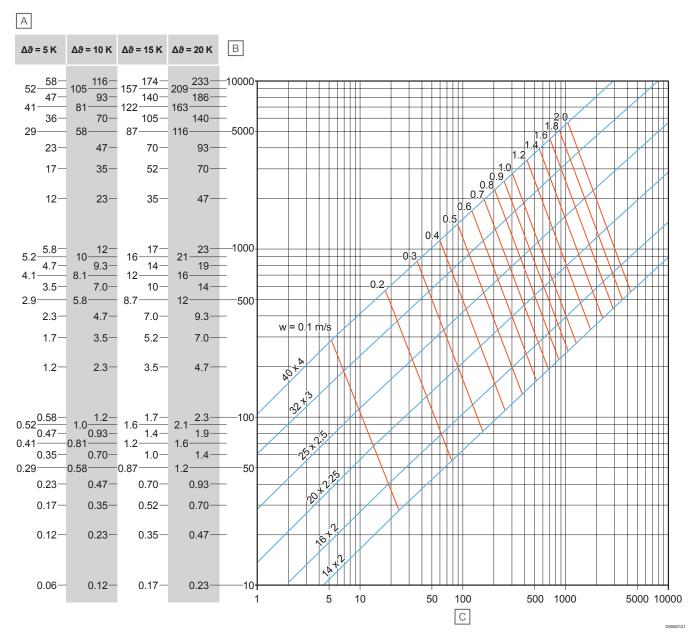
Uponor Smart Base angle baseboard

Number	Designation		Dimension
1 pair	Records and	For connection to the radiator during base installation, in conjunction with the Uponor S-Press PLUS baseboard connection kit. The coated copper pipe, 15 x 1 mm, can be connected to the radiator using the Uponor Cu compression adapter.	15 x 1
2 units		With G ³ / ₄ euro-cone elastically sealing for the connection of coated copper pipes 15 x 1 mm of Uponor elbow adapters/T-joints to a tap block, radiator or Uponor radiator connecting nipple with G ³ / ₄ MT euro-cone	15CU-¾" Euro
	F\$P0000210	Union nut brass coated, clamping ring brass bright and EPDM sealing cone	
	•	Ribbed union nut with wrench size 30	


Single-pipe heating with loop line, radiator connections from below

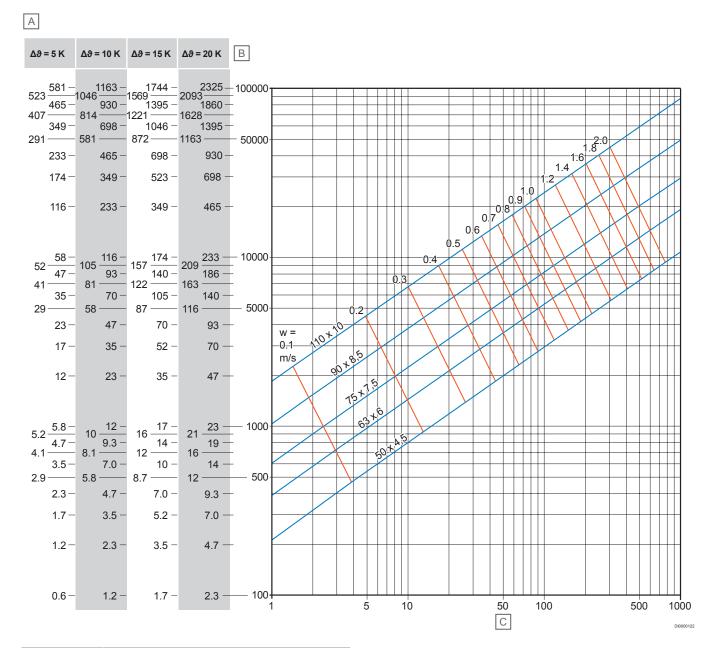
Radiator and single-pipe valve fitting using Uponor Uni screw MLC connection from the floor

	Number	Designation		Dimension				
$ \land $	Option 1							
	Uponor Uni-C screw connection MLC							
	2 units	POSSOS	Two-part brass screw connection, with union nut and pressure sleeve	14-½"FT Euro				
			 For the connection of Uponor composite pipes MLC/Uni Pipe PLUS to MT- Uponor fittings, sanitary connections and Uni-C manifolds S 	16-½"FT Euro				
			 Internal thread according to DIN ENISO 228-1 	20-½"FT				
			Connect without deburring	Euro				
- C	Option 2							
RP0000204	Uponor Uni-C screw connection MLC							
	2 units		Two-part brass screw connection, with union nut and pressure sleeve	14-¾"FT Euro				
			 For the connection of Uponor composite pipes MLC/Uni Pipe PLUS to MT- Uponor fittings, sanitary connections and Uni-C manifolds S 	16-¾"FT Euro				
		RP0000191	Internal thread according to DIN ENISO 228-1	20-¾"FT				
			Connect without deburring	Euro				
				25-¾"FT Euro				


Valve radiator and single-pipe connection block using the Uponor S-Press PLUS radiator connection elbow out of the floor

	Number	Designation			Dimension
\frown	Uponor S-	Press PLUS radiator	conn	ection elbow	
	2 units	(E)	•	Made of brass and coated copper tube	14-15CU
			•	The 15 mm copper pipe can be connected to the radiator using the	l=350 mm
		JEL		Uponor Smart radi Cu compression adapter.	16-15CU
					l=350 mm
		Tree			16-15CU
					l=1000 mm
		- Control			
2		01000203			

11.5 Data for pipe network calculations


Pipe friction pressure gradient for Uponor composite pipes 14 - 40 mm

Item	Description
A	Power Q kW
В	Mass flow m kg/h
С	Pipe friction pressure gradient R PA/m

Pipe friction pressure gradient for Uponor composite pipes 14 - 40 mm in heating installations as a function of mass flow at an average water temperature of 60 °C

Pipe friction pressure gradient for Uponor composite pipes 50 — 110 mm

Item	Description
A	Power Q kW
В	Mass flow m kg/h
С	Pipe friction pressure gradient R PA/m

Pipe friction pressure gradient for Uponor composite pipes

 $50-110~\rm{mm}$ in heating installations as a function of mass flow at an average water temperature of 60 $^{\circ}\rm{C}$

Pipe friction tables for heating/cooling

Tables describing the pipe friction pressure gradient (heating or cooling mode) for water as a function of heat or mass flow are

available in the following pages. Parametres for the respective tables are given in the headlines.

For cooling mode, possible condensation must be taken into account. If necessary, suitable measures must be taken for condensate drainage.

Insufficiently insulated cold water pipes can lead to condensation on the surface of the insulation layer, and unsuitable materials can become damp. Closed cell or comparable materials with a high water vapour diffusion resistance should be used. All joints, cuts, seams and ends must be sealed water vapour-tight.

Heating mode: ∆ϑ = 20 K (80 °C/60 °C) - 14 — 16 mm

OD x s (ID) — V/I		14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
400	17	0.06	10	0.04	4
600	26	0.09	20	0.06	9
300	34	0.12	33	0.09	14
1000	43	0.16	48	0.11	21
200	52	0.19	66	0.13	28
400	60	0.22	86	0.15	26
1600	69	0.25	108	0.17	26
1800	78	0.28	132	0.19	56
2000	86	0.31	159	0.22	67
2200	95	0.34	187	0.24	79
2400	103	0.37	218	0.26	92
2600	112	0.41	250	0.28	105
800	121	0.44	284	0.30	120
000	129	0.47	321	0.32	135
200	138	0.50	359	0.35	151
400	146	0.53	399	0.37	168
600	155	0.56	441	0.39	186
800	164	0.59	484	0.41	204
000	172	0.62	530	0.43	223
200	181	0.65	577	0.45	243
400	189	0.69	626	0.48	263
600	198	0.72	677	0.50	284
800	207	0.75	729	0.52	306
000	215	0.78	783	0.54	329
5200	224	0.81	839	0.56	353
400	233	0.84	897	0.58	377
600	241	0.87	956	0.61	401
800	250	0.90	1017	0.63	427
000	258	0.93	1079	0.65	453
200	267	0.97	1143	0.67	480
6400	276	1.00	1209	0.69	507
600	284			0.71	536
800	293			0.74	564
000	301			0.76	594
200	310			0.78	624
400	319			0.80	655
600	327			0.82	687
800	336			0.84	719
000	344			0.87	751
500	366			0.92	836
000	388			0.97	925
500	409			1.03	1018
0000	431			1.00	
0500	452				
1000	474				
1500	495				
2000	517				
	538				
2500 3000	538 560				

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 20 K (80 °C/60 °C) - 20 — 32 mm

m, kg/h 43 86 129 172 215 258 301 344 388	v, m/s 0.06 0.13 0.19 0.026 0.32 0.45	R, Pa/m 6 20 66 98 134	v, m/s 0.04 0.08 0.12 0.16	R, Pa/m 2 6 12	v, m/s 0.02 0.05	R, Pa/m 1 2
86 129 172 215 258 301 344	0.13 0.19 0.026 0.32 0.45	20 66 98 134	0.08 0.12	6	0.05	2
129 172 215 258 301 344	0.19 0.026 0.32 0.45	66 98 134	0.12			
172 215 258 301 344	0.026 0.32 0.45	98 134		12	0.07	
215 258 301 344	0.32 0.45	134	0.16		0.07	4
258 301 344	0.45			20	0.09	6
301 344			0.19	29	0.12	8
344		176	0.23	40	0.14	12
	0.52	222	0.27	52	0.16	15
	0.58	273	0.31	66	0.18	19
	0.65	329	0.35	81	0.21	23
431	0.71	389	0.39	98	0.23	28
						33
						39
						44
						51
						57
	1.07	100				64
						71
						79
						87
						95
						103
						112
						122
						131
						141
			1.01	529		151
				566	0.62	161
1206			1.09	603	0.65	172
1249			1.13	642	0.67	183
1292			1.17	682	0.69	195
1378			1.25	766	0.74	218
1464			1.32	853	0.78	243
1550			1.40	945	0.83	269
1636			1.48	1041	0.88	296
1722			1.56	1140	0.92	325
1809					0.97	354
1895					1.01	385
1981					1.06	417
2067					1.11	449
2153					1.15	483
						519
						555
						592
						630
						670
						710
						710
						795
						838 883
	474 517 560 603 646 689 732 775 818 861 904 947 990 1033 1077 1120 1163 1206 1249 1292 1378 1464 1550 1636 1722 1809 1895 1981 2067	474 0.78 517 0.84 560 0.91 603 0.97 646 1.04 689 732 775 818 861 904 947 990 1033 1077 1120 1163 1206 1249 1292 1378 1464 1550 1636 1722 1809 1895 1981 2067 2153 2239 2325 2411 2498 2584 2670 2756 2842 2928	474 0.78 454 517 0.84 523 560 0.91 596 603 0.97 673 646 1.04 755 689	474 0.78 454 0.43 517 0.84 523 0.47 560 0.91 596 0.51 603 0.97 673 0.55 646 1.04 755 0.58 689 0.62 732 0.66 775 0.70 818 0.74 861 0.78 994 0.82 947 0.86 990 0.90 1033 0.93 1077 0.97 1120 1.01 1163 1.05 1206 1.09 1.25 1.44 172 1.56 1.32 1464 1.32 1.25 1464 1722 1.56 1809 1.40 1636 1.44 1.32 1.25 1489 1.22 1.56 1809 1.42 1895 1.25 1.41 1.42 1.42 1981 2239 2325 2325 2325 2325 2325 2411 2498 2584 2670	474 0.78 454 0.43 116 517 0.84 523 0.47 135 560 0.91 596 0.51 155 603 0.97 673 0.55 177 646 1.04 755 0.58 200 689 0.62 224 732 0.66 249 775 0.70 275 818 0.74 303 861 0.74 303 861 0.78 332 904 0.82 362 947 0.86 393 990 0.90 425 1033 0.93 459 1077 0.97 493 1120 1.01 529 1163 1.05 566 1206 1.09 603 1249 1.13 642 122 1.17 682 1378 1.25 766 1464 1.32 853 1550 1.40 945 1636 1.48 1041 1722 1.56 1140 1895	474 0.78 454 0.43 116 0.25 517 0.84 523 0.47 135 0.28 560 0.91 596 0.51 155 0.30 603 0.97 673 0.55 177 0.32 646 1.04 755 0.58 200 0.35 689 0.62 224 0.37 732 0.66 249 0.39 775 0.70 275 0.41 818 0.74 303 0.44 861 0.78 332 0.46 904 0.82 362 0.48 947 0.86 393 0.51 990 0.90 425 0.53 1033 0.93 459 0.55 1077 0.97 493 0.86 1206 1.09 603 0.65 1224 1.17 682 0.69 1378 1.25 766 0.74 1464 1.32 853 0.78 1550 1.40 945 0.83 1636 1.48 1041 0.82 1899 1.66 1.48 1041 2239 1.26 1.16 2239 1.24 1.24 2441 1.32 853 1.34 2584 1.34 2584 1.34 2584 1.34 25928 1.57

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 20 K (80 °C/60 °C) - 40 — 63 mm

OD x s (ID)	— V/I	40 x 4 mm	(32 mm) — 0.80 l/m	50 x 4,5 mm	ı (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
5000	215	0.08	3	0.05	1	0.03	1
10000	431	0.15	10	0.09	3	0.06	1
15000	646	0.23	21	0.14	7	0.09	2
20000	861	0.30	35	0.19	11	0.12	4
25000	1077	0.38	52	0.23	16	0.15	6
30000	1292	0.46	72	0.28	22	0.18	8
35000	1507	0.53	95	0.32	29	0.21	10
40000	1722	0.61	120	0.37	37	0.24	13
45000	1938	0.68	148	0.42	45	0.27	16
50000	2153	0.76	179	0.46	55	0.30	19
55000	2368	0.84	212	0.51	65	0.33	23
50000	2584	0.91	248	0.56	76	0.36	27
65000	2799	0.99	286	0.60	87	0.39	31
0000	3014	1.07	326	0.65	100	0.42	35
5000	3230	1.14	369	0.70	113	0.45	40
30000	3445	1.22	414	0.74	126	0.48	44
35000	3660	1.29	462	0.79	141	0.51	50
00000	3876	1.37	512	0.83	156	0.54	55
95000	4091	1.45	564	0.88	172	0.57	60
00000	4306	1.52	619	0.93	188	0.60	66
05000	4522			0.97	206	0.63	72
110000	4737			1.02	223	0.66	78
15000	4952			1.07	242	0.69	85
20000	5167			1.11	261	0.72	92
125000	5383			1.16	281	0.75	99
30000	5598			1.20	302	0.78	106
135000	5813			1.25	323	0.81	113
140000	6029			1.30	345	0.84	121
45000	6244			1.34	367	0.87	129
150000	6459			1.39	390	0.90	137
160000	6890			1.48	438	0.96	154
70000	7321			1.58	489	1.02	171
80000	7751			1.00	400	1.08	190
90000	8182					1.14	209
200000	8612					1.20	230
210000	9043					1.26	251
20000	9043					1.32	273
20000	9474					1.32	273
230000	10335					1.38	319
240000	10335					1.44	319
260000	11196					1.56	368
270000	11627					1.62	394
80000	12057					1.68	421
90000	12488					1.74	449
00000	12919					1.80	477
10000	13349					1.86	506
20000	13780					1.92	536
30000	14211					1.98	567
40000	14641					2.04	599
350000	15072					2.10	630

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 20 K (80 °C/60 °C) - 75 — 110 mm

OD x s (ID) -	– V/I	75 x 7,5 mn	n (60 mm) — 2.83 l/m	90 x 8,5 mn	n (73 mm) — 4.18 l/m	110 x 10 m	m (90 mm) — 6.36 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
60000	2584	0.26	12	0.18	5	0.12	2
80000	3445	0.35	20	0.23	8	0.15	3
100000	4306	0.43	30	0.29	12	0.19	4
120000	5167	0.52	42	0.35	16	0.23	6
140000	6029	0.61	55	0.41	22	0.27	8
160000	6890	0.69	70	0.47	28	0.31	10
180000	7751	0.78	87	0.53	34	0.35	12
200000	8612	0.87	105	0.58	41	0.38	15
220000	9474	0.95	125	0.64	49	0.42	18
240000	10335	1.04	146	0.70	57	0.46	21
260000	11196	1.13	169	0.76	66	0.50	24
280000	12057	1.21	193	0.82	75	0.54	28
300000	12919	1.30	218	0.88	85	0.58	31
320000	13780	1.38	245	0.94	96	0.62	35
340000	14641	1.47	274	0.99	107	0.65	39
360000	15502	1.56	304	1.05	118	0.69	43
380000	16364	1.64	335	1.11	130	0.73	48
400000	17225	1.73	367	1.17	143	0.77	52
420000	18086	1.82	401	1.23	156	0.81	57
440000	18947	1.90	437	1.29	170	0.85	62
460000	19809	1.99	473	1.34	184	0.88	67
480000	20670			1.40	199	0.92	73
500000	21531			1.46	214	0.96	78
520000	22392			1.52	230	1.00	84
540000	23254			1.58	246	1.04	90
560000	24115			1.64	263	1.08	96
580000	24976			1.70	280	1.12	102
600000	25837			1.75	298	1.15	102
620000	26699			1.81	316	1.19	115
640000	27560			1.87	335	1.13	122
660000	28421			1.93	354	1.27	129
680000	29282			1.99	374	1.31	136
700000	30144			1.99	574	1.35	144
720000	31005					1.33	151
720000	31866					1.38	159
760000	32727					1.46	167
780000	33589					1.50	175
800000	34450					1.54	183
820000	35311					1.58	192
840000	36172					1.62	200
860000	37033					1.65	209
880000	37895					1.69	218
900000	38756					1.73	227
920000	39617					1.77	236
940000	40478					1.81	245
960000	41340					1.85	255
980000	42201					1.89	265
1000000	43062					1.92	275
1020000	43923					1.96	285
1040000	44785					2.00	295

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: Δϑ = 20 K (70 °C/50 °C) - 14 — 16 mm

OD x s (ID) — V	//	14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
200	9	0.03	3	0.02	1
400	17	0.06	11	0.04	5
600	26	0.09	21	0.06	9
800	34	0.12	34	0.09	15
1000	43	0.15	50	0.11	21
1200	52	0.19	68	0.13	29
1400	60	0.22	89	0.15	38
1600	69	0.25	112	0.17	47
1800	78	0.28	137	0.19	58
2000	86	0.31	114	0.22	69
2200	95	0.34	194	0.24	82
2400	103	0.37	225	0.26	95
2600	112	0.40	258	0.28	109
2800	121	0.43	294	0.30	124
3000	129	0.46	331	0.32	140
3200	138	0.50	370	0.34	156
3400	146	0.53	411	0.37	173
3600	155	0.56	454	0.39	192
3800	164	0.59	499	0.41	210
1000	172	0.62	546	0.43	230
1200	181	0.65	595	0.45	250
400	189	0.68	645	0.47	271
1600	198	0.71	697	0.50	293
1800	207	0.74	751	0.52	316
5000	215	0.77	807	0.54	339
5200	224	0.81	864	0.56	363
5400	233	0.84	923	0.58	388
5600	241	0.87	984	0.60	414
5800	250	0.90	1046	0.62	440
5000	258	0.93	1111	0.65	467
5000 5200	267	0.96	1177	0.67	494
5200 5400	276	0.99	1244	0.69	522
600 600	284	1.02	1313	0.71	551
5800 5800	293	1.02	1515	0.73	581
7000	301			0.75	611
7500	323			0.81	690
3000	344			0.86	773
3500	366			0.91	860
9000	388			0.97	651
9500	409			1.02	1046
10000	431				
10500	452				
11000	474				
11500	495				
12000	517				
12500	538				
13000	560				
13500	581				
14000	603				
4500	624				

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: Δϑ = 20 K (70 °C/50 °C) - 20 — 32 mm

OD x s (ID)	— V/I	20 x 2,25 mm	n (15,5 mm) — 0.19 l/m	25 x 2,5 mm	n (20 mm) — 0.31 l/r	m 32 x 2 mm (26 mm) — 0.53 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
1000	43	0.06	6	0.04	2	0.02	1
2000	86	0.13	21	0.08	6	0.05	2
3000	129	0.19	42	0.12	13	0.07	4
1000	172	0.26	68	0.15	21	0.09	6
5000	215	0.32	101	0.19	30	0.11	9
6000	258	0.39	138	0.23	41	0.14	12
7000	301	0.45	181	0.27	54	0.16	16
3000	344	0.52	229	0.31	68	0.18	120
9000	388	0.58	281	0.35	84	0.21	24
10000	431	0.64	338	0.39	101	0.23	29
11000	474	0.71	400	0.43	119	0.25	34
12000	517	0.77	466	0.46	139	0.28	40
13000	560	0.84	537	0.50	160	0.30	46
14000	603	0.90	612	0.54	182	0.32	52
5000	646	0.97	692	0.58	205	0.34	59
6000	689	1.03	755	0.62	230	0.37	66
7000	732			0.66	256	0.39	73
8000	775			0.70	283	0.41	81
9000	818			0.74	311	0.44	89
20000	861			0.77	341	0.46	98
1000	904			0.81	372	0.48	106
2000	947			0.85	404	0.50	115
3000	990			0.89	437	0.53	125
24000	1033			0.93	471	0.55	135
25000	1077			0.97	506	0.57	145
6000	1120			1.01	543	0.60	155
27000	1163			1.05	580	0.62	166
28000	1206			1.08	619	0.64	177
29000	1200			1.12	659	0.66	185
0000	1292			1.16	700	0.69	200
32000	1378			1.24	785	0.73	200
4000	1464			1.32	875	0.78	249
6000	1550			1.32	969	0.83	276
8000	1636			1.33	1067	0.87	304
0000	1722			1.55	1169	0.92	333
2000	1809			1.55	1103	0.92	363
4000	1809					1.01	395
6000	1895					1.01	427
8000	2067				· · · · · · · · · · · · · · · · · · ·	1.05	427
5000 50000	2067					1.10	461 496
2000	2239					1.19	532
4000	2325					1.24	569
6000	2411					1.28	607
8000	2498					1.33	646
0000	2584					1.38	686
2000	2670					1.42	728
4000	2756					1.47	770
6000	2842					1.51	814
6000	2928					1.56	859
0000	3041					1.60	905

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: Δϑ = 20 K (70 °C/50 °C) - 40 — 63 mm

OD x s (ID) ·	— V/I		(32 mm) — 0.80 l/m	50 x 4,5 mm	n (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
0000	431	0.15	11	0.09	3	0.06	1
5000	646	0.23	22	0.14	7	0.09	2
20000	861	0.30	36	0.18	11	0.12	4
25000	1077	0.38	54	0.23	17	0.15	6
30000	1292	0.45	74	0.28	23	0.18	8
35000	1507	0.53	97	0.32	30	0.21	11
10000	1722	0.61	123	0.37	38	0.24	13
5000	1938	0.68	152	0.41	47	0.27	16
50000	2153	0.76	184	0.46	56	0.30	20
55000	2368	0.83	217	0.51	67	0.33	23
0000	2584	0.91	254	0.55	78	0.36	27
5000	2799	0.98	293	0.60	89	0.39	32
0000	3014	1.06	334	0.65	102	0.42	36
5000	3230	1.13	378	0.69	115	0.45	41
0000	3445	1.21	425	0.74	130	0.48	46
5000	3660	1.29	473	0.78	144	0.51	51
0000	3876	1.36	524	0.83	160	0.54	56
5000	4091	1.44	578	0.88	176	0.57	62
00000	4306	1.51	633	0.92	193	0.60	68
05000	4522			0.97	211	0.63	74
10000	4737			1.01	229	0.66	80
15000	4952			1.06	248	0.69	87
20000	5167			1.11	267	0.71	94
25000	5383			1.15	288	0.74	101
30000	5598			1.20	309	0.77	108
35000	5813			1.24	330	0.80	116
40000	6029			1.29	353	0.83	124
45000	6244			1.34	376	0.86	132
50000	6459			1.38	399	0.89	140
60000	6890			1.47	448	0.95	157
70000	7321			1.57	500	1.01	175
80000	7751					1.07	194
90000	8182					1.13	214
00000	8612					1.19	235
10000	9043					1.15	256
20000	9474					1.31	279
30000	9904	<u>.</u>				1.37	302
40000	10335					1.37	326
50000	10335					1.43	320
60000	10766					1.49	377
270000	11627					1.55	403
80000	12057					1.67	403
90000	12488					1.73	459
00000	12919					1.79	488
10000	13349					1.85	518
20000	13780					1.91	548
30000	14211					1.97	579
40000	14641					2.03	612
50000	15072					2.09	644
60000	15502					2.14	678

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: Δϑ = 20 K (70 °C/50 °C) - 75 — 110 mm

OD x s (ID) -	— V/I	75 x 7,5 mm	n (60 mm) — 2.83 l/m	90 x 8,5 mn	n (73 mm) — 4.18 l/m	110 x 10 m	m (90 mm) — 6.36 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
70000	3014	0.30	17	0.20	6	0.13	2
90000	3876	0.39	26	0.26	10	0.17	4
110000	4737	0.47	37	0.32	14	0.21	5
130000	5598	0.56	50	0.38	19	0.25	7
150000	6459	0.65	64	0.44	25	0.29	9
170000	7321	0.73	80	0.49	31	0.33	12
190000	8182	0.82	98	0.55	38	0.36	14
210000	9043	0.90	118	0.61	46	0.40	17
230000	9904	0.99	138	0.67	54	0.44	20
250000	10766	1.08	161	0.73	63	0.48	23
270000	11627	1.16	185	0.79	72	0.52	26
290000	12488	1.25	210	0.84	82	0.55	30
310000	13349	1.33	237	0.90	92	0.59	34
330000	14211	1.42	265	0.96	103	0.63	38
350000	15072	1.51	295	1.02	115	0.67	42
370000	15933	1.59	326	1.08	127	0.71	46
390000	16794	1.68	359	1.13	140	0.75	51
410000	17656	1.76	392	1.19	153	0.78	56
430000	18517	1.85	428	1.25	167	0.82	61
450000	19378	1.94	464	1.31	181	0.86	66
470000	20239	2.02	503	1.37	196	0.90	71
490000	21100			1.42	211	0.94	77
510000	21962			1.48	227	0.98	83
530000	22823			1.54	243	1.01	89
550000	23254			1.60	260	1.05	95
570000	24545			1.66	277	1.09	101
590000	25407			1.72	295	1.13	108
610000	26268			1.77	313	1.17	114
630000	27129			1.83	332	1.21	121
650000	27990			1.89	352	1.24	128
670000	28852			1.95	372	1.28	136
690000	29713			2.01	392	1.32	143
710000	30574					1.36	151
730000	31435					1.40	158
750000	32297					1.43	166
770000	33158					1.47	174
790000	34019					1.51	183
810000	34880					1.55	191
830000	35742					1.59	200
850000	36603					1.63	209
870000	37464					1.66	218
890000	38325					1.70	227
910000	39187					1.70	236
930000	40048					1.74	230
950000	40048					1.78	255
970000	41770					1.86	265
						1.80	
990000	42632						275
1010000	43493					1.93	285
1030000	44354					1.97	296
1050000	45215					2.01	306

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 15 K (70 °C/55 °C) - 14 — 16 mm

OD x s (ID) — V/	I	14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
200	11	0.04	5	0.03	2
400	23	0.08	17	0.06	7
600	34	0.12	34	0.09	14
800	46	0.17	55	0.11	24
1000	57	0.21	81	0.14	34
1200	69	0.25	111	0.17	47
1400	80	0.29	145	0.20	61
1600	92	0.33	182	0.23	77
1800	103	0.37	223	0.26	94
2000	115	0.41	268	0.29	113
2200	126	0.46	316	0.32	133
2400	138	0.50	367	0.34	155
2600	149	0.54	422	0.37	178
2800	161	0.58	480	0.40	202
3000	172	0.62	542	0.43	228
3200	184	0.66	606	0.46	255
3400	195	0.70	674	0.49	284
3600	207	0.74	745	0.52	313
3800	218	0.79	819	0.55	344
4000	230	0.83	896	0.57	377
4200	241	0.87	976	0.60	410
4400	253	0.91	1060	0.63	445
4600	264	0.95	1146	0.66	481
4800	276	0.99	1235	0.69	518
5000	287	1.03	1327	0.72	557
5200	299	1.00	1021	0.72	597
5400	310			0.78	638
5600	322			0.80	680
5800	333			0.83	723
6000	344			0.86	767
6200	356			0.89	813
6400	367 379			0.92	860 908
6600					908
6800	390			0.98	
7000	402			1.01	1007
7200	413				
7400	425				
7600	436				
7800	448				
8000	459				
8200	471				
8400	482				
8600	494				
8800	505				
9000	517				
9200	528				
9400	540				
9600	551				
9800	563				
10000	574				

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 15 K (70 °C/55 °C) - 20 — 32 mm

OD x s (ID) ·	— V/I		n (15,5 mm) — 0.19 l/m	25 x 2,5 mr	n (20 mm) — 0.31 l/m	32 x 2 mm	(26 mm) — 0.53 l/
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
000	57	0.09	10	0.05	3	0.03	1
500	86	0.13	21	0.08	6	0.05	2
000	115	0.17	34	0.10	10	0.06	3
500	144	0.22	50	0.13	15	0.08	4
000	172	0.26	68	0.16	20	0.09	6
500	201	0.30	89	0.18	27	0.11	8
000	230	0.34	112	0.21	33	0.12	10
500	258	0.39	137	0.23	41	0.14	12
000	287	0.43	165	0.26	49	0.15	14
500	316	0.47	195	0.28	58	0.17	17
000	344	0.52	227	0.31	68	0.18	19
500	373	0.56	261	0.34	78	0.20	22
000	402	0.60	298	0.36	89	0.21	25
500	431	0.65	336	0.39	100	0.23	29
000	459	0.69	376	0.41	112	0.24	32
500	488	0.73	419	0.44	124	0.26	36
000	517	0.78	463	0.47	138	0.28	40
500	545	0.82	509	0.49	151	0.29	43
0000	574	0.86	558	0.52	166	0.31	48
0500	603	0.90	608	0.54	180	0.32	52
1000	632	0.95	660	0.57	196	0.34	56
1500	660	0.99	714	0.59	212	0.35	61
2000	689	1.03	770	0.62	228	0.37	65
2500	718			0.65	245	0.38	70
3000	746			0.67	263	0.40	75
3500	775			0.70	281	0.41	80
4000	804			0.72	300	0.43	86
4500	833			0.75	319	0.44	91
5000	861			0.78	339	0.46	97
6000	919			0.83	380	0.49	109
7000	976			0.88	423	0.52	121
8000	1033			0.93	468	0.55	134
9000	1091			0.98	515	0.58	147
0000	1148			1.03	564	0.61	161
2000	1263			1.14	668	0.67	191
4000	1378			1.24	780	0.73	222
4000 6000	1493			1.34	900	0.80	256
8000	1493			1.34	1027	0.80	293
0000	1722			1.45	1161	0.80	331
2000	1722			1.00	1101	0.92	331
4000	1952					1.04	413
4000 6000	2067					1.04	413
8000	2182					1.16	504
0000	2297					1.22	552
2000	2411					1.29	603
4000	2526					1.35	655
6000	2641					1.41	709
8000	2756					1.47	766
0000	2871					1.53	824

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 15 K (70 °C/55 °C) - 40 — 63 mm

OD x s (ID) -	– V/I	40 x 4 mm	(32 mm) — 0.80 l/m	50 x 4,5 mm	n (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
3000	459	0.16	12	0.10	4	0.06	1
0000	574	0.20	18	0.12	5	0.08	2
2000	689	0.24	24	0.15	8	0.10	3
4000	804	0.28	32	0.17	10	0.11	3
6000	919	0.32	40	0.20	12	0.13	4
8000	1033	0.36	50	0.22	15	0.14	5
20000	1148	0.40	60	0.25	18	0.16	7
2000	1263	0.44	71	0.27	22	0.17	8
4000	1378	0.48	83	0.30	25	0.19	9
6000	1493	0.53	95	0.32	29	0.21	10
8000	1608	0.57	108	0.34	33	0.22	12
0000	1722	0.61	123	0.37	38	0.24	13
2000	1837	0.65	137	0.39	42	0.25	15
4000	1952	0.69	153	0.42	47	0.27	17
6000	2067	0.73	170	0.44	52	0.29	18
8000	2182	0.77	187	0.47	57	0.30	20
0000	2297	0.81	204	0.49	63	0.32	22
2000	2411	0.85	223	0.52	68	0.33	24
4000	2526	0.89	242	0.54	74	0.35	26
6000	2641	0.93	263	0.57	80	0.37	28
8000	2756	0.97	283	0.59	86	0.38	30
0000	2871	1.01	304	0.62	93	0.40	33
5000	3158	1.11	361	0.68	110	0.44	39
0000	3445	1.21	422	0.74	129	0.48	45
5000	3732	1.31	487	0.80	148	0.52	52
0000	4019	1.41	556	0.86	169	0.56	60
5000	4306	1.51	629	0.92	192	0.60	67
0000	4593			0.98	215	0.64	76
5000	4880			1.05	240	0.68	84
0000	5167			1.11	266	0.72	93
5000	5455			1.17	293	0.76	103
00000	5742			1.23	321	0.80	113
05000	6029			1.29	351	0.84	123
10000	6316			1.35	381	0.87	134
15000	6603			1.42	413	0.91	145
20000	6890			1.48	446	0.95	156
25000	7177			1.54	480	0.99	168
30000	7464			1.04	+00	1.03	180
40000 50000	8038 8612					1.11	206
60000	9187					1.27	262
70000	9761					1.35	
80000	10335					1.43	324
90000	10909					1.51	357
00000	11483					1.59	392
10000	12057					1.67	428
20000	12632					1.75	466
30000	13206					1.83	505
40000	13780					1.91	545
50000	14354					1.99	587

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 15 K (70 °C/55 °C) - 75 — 110 mm

OD x s (ID) -	– V/I	75 x 7,5 mn	n (60 mm) — 2.83 l/m	90 x 8,5 mm	n (73 mm) — 4.18 l/m	110 x 10 m	m (90 mm) — 6.36 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
40000	2297	0.23	10	0.16	4	0.10	1
50000	2871	0.29	15	0.19	6	0.13	2
60000	3445	0.34	21	0.23	8	0.15	3
70000	4019	0.40	27	0.27	11	0.18	4
80000	4593	0.46	35	0.31	14	0.20	5
90000	5167	0.52	43	0.35	17	0.23	6
100000	5742	0.57	52	0.39	20	0.26	7
110000	6316	0.63	61	0.43	24	0.28	9
120000	6890	0.69	72	0.47	28	0.31	10
130000	7464	0.75	83	0.50	32	0.33	12
140000	8038	0.80	95	0.54	37	0.36	14
150000	8612	0.86	107	0.58	42	0.38	15
160000	9187	0.92	120	0.62	47	0.41	17
170000	9761	0.98	134	0.66	52	0.43	19
180000	10335	1.03	148	0.70	58	0.46	21
190000	10909	1.09	164	0.74	64	0.49	23
200000	11483	1.15	180	0.78	70	0.51	26
220000	12632	1.26	213	0.85	83	0.56	30
240000	13780	1.38	249	0.93	97	0.61	36
260000	14928	1.49	288	1.01	112	0.66	41
280000	16077	1.61	329	1.09	128	0.72	47
300000	17225	1.72	373	1.16	145	0.77	53
320000	18373	1.84	419	1.24	163	0.82	60
340000	19522	1.95	468	1.32	182	0.87	67
360000	20670	2.07	519	1.40	202	0.92	74
380000	21818			1.48	223	0.97	81
400000	22967			1.55	244	1.02	89
420000	24115			1.63	267	1.07	97
440000	25263			1.71	290	1.12	106
460000	26411			1.79	315	1.17	115
480000	28560			1.86	340	1.23	124
500000	28708			1.94	366	1.28	134
520000	29856			2.02	393	1.33	143
540000	31005					1.38	154
560000	32153					1.43	164
580000	33301					1.48	175
600000	34450					1.53	186
620000	35598					1.58	197
640000	36746					1.63	209
660000	37895					1.69	221
680000	39043					1.74	233
700000	40191					1.79	246
720000	41340					1.84	259
740000	42488					1.89	272
760000	43636					1.94	286
780000	44785					1.99	299
800000	45933					2.04	314
820000	47081					2.09	328
840000	48230					2.15	343
						-	-

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 10 K (55 °C/45 °C) - 14 — 16 mm

R, Pa/m 5 9 15 22 30 39 49 60 72 85 99 113 129 145 162 180
9 15 22 30 39 49 60 72 85 99 113 129 145 162
15 22 30 39 49 60 72 85 99 113 129 145 162
22 30 39 49 60 72 85 99 113 129 145 162
30 39 49 60 72 85 99 113 129 145 162
39 49 60 72 85 99 113 129 145 162
49 60 72 85 99 113 129 145 162
60 72 85 99 113 129 145 162
72 85 99 113 129 145 162
85 99 113 129 145 162
99 113 129 145 162
113 129 145 162
129 145 162
145 162
162
162
199
218
238
259
281
304
327
351
376
402
428
455
483
540
601
664
730
799
870
945
1021
1101

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 10 K (55 °C/45 °C) - 20 — 32 mm

OD x s (ID)	— V/I	20 x 2,25 mm	n (15,5 mm) — 0.19 l/m	25 x 2,5 mr	n (20 mm) — 0.31 l/m	32 x 2 mm	(26 mm) — 0.53 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
500	43	0.06	7	0.04	2	0.02	1
000	86	0.13	22	0.08	7	0.05	2
500	129	0.19	43	0.12	13	0.07	4
2000	172	0.26	71	0.15	21	0.09	6
2500	215	0.32	104	0.19	31	0.11	9
3000	258	0.39	143	0.23	43	0.14	12
3500	301	0.45	188	0.27	56	0.16	16
000	344	0.51	237	0.31	71	0.18	20
500	388	0.58	291	0.35	87	0.21	25
5000	431	0.64	350	0.39	104	0.23	30
500	474	0.71	414	0.42	123	0.25	35
000	517	0.77	482	0.46	143	0.27	41
500	560	0.83	555	0.50	165	0.30	47
000	603	0.90	632	0.54	188	0.32	54
500	646	0.96	714	0.58	212	0.34	61
000	689	1.03	800	0.62	237	0.37	68
500	732	1.00		0.66	264	0.39	76
000	775			0.69	292	0.33	84
500	818			0.09	321	0.41	92
0000	861			0.73	352	0.46	101
0500	904			0.81	383	0.48	110
1000	904 947			0.85	416	0.48	119
1500	990			0.89	450	0.52	129
2000	1033			0.93	486	0.55	139
2500	1077			0.96	522	0.57	149
3000	1120			1.00	560	0.59	160
3500	1163			1.04	598	0.62	171
4000	1206			1.08	638	0.64	182
4500	1249			1.12	679	0.66	194
5000	1292			1.16	721	0.68	206
6000	1378			1.23	809	0.73	231
7000	1464			1.31	901	0.78	257
8000	1550			1.39	997	0.82	285
9000	1636			1.47	1098	0.87	313
0000	1722			1.54	1203	0.91	343
1000	1809					0.96	374
2000	1895					1.00	406
3000	1981					1.05	440
4000	2067					1.10	474
5000	2153					1.14	510
6000	2239					1.19	547
7000	2325					1.23	585
8000	2411					1.28	624
9000	2498					1.32	665
0000	2584					1.37	706
1000	2670					1.41	749
2000	2756					1.46	792
3000	2842					1.51	837
4000	2928					1.55	883
5000	3014					1.60	930

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 10 K (55 °C/45 °C) - 40 — 63 mm

OD x s (ID) — V/I		40 x 4 mm (32 mm) — 0.80 l/m		50 x 4,5 mm	n (41 mm) — 1.32 l/m	63 x 6 mm (51 mm) — 2.04 l/m		
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m	
2000	172	0.06	2	0.04	1	0.02	1	
4000	344	0.12	8	0.07	2	0.05	1	
5000	517	0.18	15	0.11	5	0.07	2	
3000	689	0.24	25	0.15	8	0.09	3	
10000	861	0.30	38	0.18	12	0.12	4	
12000	1033	0.36	52	0.22	16	0.14	6	
14000	1206	0.42	68	0.26	21	0.17	7	
16000	1378	0.48	86	0.29	26	0.19	9	
18000	1550	0.54	106	0.33	32	0.21	11	
20000	1722	0.60	127	0.37	39	0.24	14	
22000	1895	0.66	151	0.40	46	0.26	16	
24000	2067	0.72	176	0.44	54	0.28	19	
26000	2239	0.78	203	0.48	62	0.31	22	
28000	2411	0.84	231	0.51	71	0.33	25	
30000	2584	0.90	261	0.55	80	0.36	28	
32000	2756	0.96	293	0.59	90	0.38	32	
34000	2928	1.02	327	0.59	100	0.38	35	
34000 36000	3100	1.02	362	0.62	111	0.40	39	
38000	3100	1.08	362 398	0.66	111	0.43	43	
10000	3445	1.20	437	0.73	133	0.47	47	
2000	3617	1.27	476	0.77	145	0.50	51	
4000	3789	1.33	518	0.81	158	0.52	56	
6000	3962	1.39	561	0.84	171	0.55	60	
8000	4134	1.45	605	0.88	185	0.57	65	
50000	4306	1.51	651	0.92	199	0.59	70	
55000	4737			1.01	235	0.65	83	
60000	5167			1.10	275	0.71	97	
65000	5598			1.19	317	0.77	112	
70000	6029			1.28	362	0.83	127	
75000	6459			1.38	410	0.89	144	
30000	6890			1.47	461	0.95	162	
35000	7321			1.56	514	1.01	180	
0000	7751					1.07	200	
95000	8182					1.13	220	
00000	8612					1.19	241	
05000	9043					1.25	263	
10000	9474					1.30	286	
15000	9904					1.36	310	
20000	10335					1.42	335	
25000	10766					1.48	360	
30000	11196					1.54	387	
35000	11627					1.60	414	
40000	12057					1.66	442	
45000	12488					1.72	471	
50000	12919					1.78	500	
55000	13349					1.84	531	
60000	13780					1.90	562	
65000						1.90	594	
70000	14211 14641							
	14041					2.02	627	

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 10 K (55 °C/45 °C) - 75 — 110 mm

OD x s (ID)	— V/I	75 x 7,5 mn	n (60 mm) — 2.83 l/m	90 x 8,5 mm	n (73 mm) — 4.18 l/m	110 x 10 m	m (90 mm) — 6.36 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
40000	3445	0.34	22	0.23	8	0.13	3
50000	4306	0.43	32	0.29	13	0.17	5
60000	5167	0.51	44	0.35	17	0.21	6
70000	6029	0.60	58	0.41	23	0.25	8
80000	6890	0.69	74	0.46	29	0.29	11
90000	7751	0.77	92	0.52	36	0.33	13
100000	8612	0.86	111	0.58	43	0.36	16
110000	9474	0.94	131	0.64	51	0.40	19
120000	10335	1.03	153	0.69	60	0.44	22
130000	11196	1.11	177	0.75	69	0.48	25
140000	12057	1.20	202	0.81	79	0.52	29
150000	12919	1.29	229	0.87	89	0.55	33
160000	13780	1.37	257	0.93	100	0.59	37
170000	14641	1.46	287	0.98	112	0.63	41
180000	15502	1.54	318	1.04	124	0.67	45
190000	16364	1.63	351	1.10	137	0.71	50
200000	17225	1.71	385	1.16	150	0.75	55
210000	18086	1.80	420	1.22	164	0.78	60
220000	18947	1.88	457	1.27	178	0.82	65
230000	19809	1.97	495	1.33	193	0.86	71
240000	20670	2.06	535	1.39	208	0.90	76
250000	21531			1.45	224	0.94	82
260000	22392			1.50	241	0.98	88
270000	23254			1.56	258	1.01	94
280000	24115			1.62	275	1.05	101
290000	24976			1.68	293	1.09	107
300000	25837			1.74	312	1.13	114
310000	26699			1.79	331	1.17	121
320000	27560			1.85	350	1.21	128
330000	28421			1.91	371	1.24	135
340000	29282			1.97	391	1.28	143
350000	30144			2.03	412	1.32	150
360000	31005			2.00		1.36	158
370000	31866					1.40	166
380000	32727					1.43	175
390000	33589					1.47	183
400000	34450					1.51	192
410000	35311					1.55	200
420000	36172					1.59	209
430000	37033					1.63	218
440000	37895					1.66	228
450000	38756					1.70	237
460000	39617					1.74	247
470000	40478					1.74	257
480000	41340					1.78	267
490000	42201					1.86	207
						1.80	
500000	43062						287
510000 520000 530000	43923 44785 45646					1.93 1.97 2.01	298 308 319

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 5 K (50 °C/45 °C) - 14 — 16 mm

OD x s (ID) — V	//I	14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
200	34	0.12	36	0.09	16
250	43	0.15	53	0.11	23
300	52	0.18	72	0.13	31
350	60	0.22	94	0.15	40
400	69	0.25	118	0.17	50
450	78	0.28	144	0.19	61
500	86	0.31	173	0.21	73
550	95	0.34	203	0.24	86
600	103	0.37	236	0.26	100
650	112	0.40	271	0.28	115
700	121	0.43	308	0.30	130
750	129	0.46	347	0.32	146
800	138	0.49	388	0.34	164
850	146	0.52	431	0.36	182
900	155	0.55	476	0.39	201
950	164	0.59	523	0.41	220
1000	172	0.62	571	0.43	241
1050	181	0.65	622	0.45	262
1100	189	0.68	674	0.47	284
1150	198	0.71	729	0.49	307
1200	207	0.74	785	0.51	330
1250	215	0.77	843	0.53	355
1300	213	0.80	902	0.56	380
1350	233	0.83	964	0.58	406
1400	233	0.86	1027	0.60	432
1450	250	0.89	1027	0.62	459
1500	250	0.89	1159	0.64	439 487
1550 1600	267 276	0.96	1227 1298	0.66	516 546
1650	284	1.02	1370	0.71	576
1700	293			0.73	607
1750	301			0.75	638
1800	310			0.77	670
1850	319			0.79	703
1900	327			0.81	737
1950	336			0.83	771
2000	344			0.86	806
2100	362			0.90	878
2200	379			0.94	953
2300	396			0.98	1030
2400	413			1.03	1111
2500	431				
2600	448				
2700	465				
2800	482				
3900	500				
3000	517				
3100	534				
3200	551				
3300	568				

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 5 K (50 °C/45 °C) - 20 — 32 mm

OD x s (ID)	— V/I	20 x 2,25 mn	n (15,5 mm) — 0.19 l/m	25 x 2,5 mr	n (20 mm) — 0.31 l/n	n 32 x 2 mm	(26 mm) — 0.53 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
400	69	0.10	15	0.06	5	0.04	1
600	103	0.15	30	0.09	9	0.05	3
300	138	0.21	49	0.12	15	0.07	4
000	172	0.26	72	0.15	22	0.09	6
1200	207	0.31	98	0.18	29	0.11	9
1400	241	0.36	128	0.22	38	0.13	11
1600	276	0.41	162	0.25	48	0.15	14
1800	310	0.46	199	0.28	59	0.16	17
2000	344	0.51	239	0.31	71	0.18	21
2200	379	0.56	282	0.34	84	0.20	24
2400	413	0.62	329	0.37	98	0.22	28
2600	448	0.67	378	0.40	113	0.24	32
2800	482	0.72	431	0.43	128	0.26	37
3000	517	0.77	486	0.46	145	0.27	42
3200	551	0.82	545	0.49	162	0.29	47
3400	586	0.87	606	0.52	180	0.31	52
3600	620	0.92	670	0.55	199	0.33	57
3800	655	0.92	737	0.59	219	0.35	63
1000	689	1.03	807	0.59	240	0.35	69
1000 1200	723	1.05	007	0.65	240	0.38	75
400	723			0.68	283	0.38	81
400 600	792			0.00	306	0.40	88
800	827			0.74	330	0.44	95
5000	861			0.77	355	0.46	102
5200	896			0.80	380	0.47	109
5400	930			0.83	407	0.49	116
5600	965			0.86	434	0.51	124
5800	999			0.89	461	0.53	132
6000	1033			0.92	490	0.55	140
500	1120			1.00	564	0.59	161
000	1206			1.08	643	0.64	184
7500	1292			1.16	727	0.68	208
8000	1378			1.23	815	0.73	233
3500	1464			1.31	908	0.77	259
0000	1550			1.39	1005	0.82	287
500	1636			1.46	1107	0.87	316
0000	1722			1.54	1213	0.91	346
0500	1809					0.96	377
1000	1895					1.00	410
1500	1981					1.05	443
2000	2067					1.09	478
2500	2153					1.14	514
3000	2239					1.18	551
3500	2325					1.23	590
4000	2411					1.28	629
4500	2498					1.32	670
5000	2584					1.37	712
5500	2670					1.41	755
6000	2756					1.46	799
6500	2842					1.50	844

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: ∆ϑ = 5 K (50 °C/45 °C) - 40 — 63 mm

OD x s (ID)	— V/I	40 x 4 mm	(32 mm) — 0.80 l/m	50 x 4,5 mm	n (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
4000	689	0.24	26	0.15	8	0.09	3
5000	861	0.30	38	0.18	12	0.12	4
5000	1033	0.36	52	0.22	16	0.14	6
7000	1206	0.42	68	0.26	21	0.17	7
3000	1378	0.48	87	0.29	27	0.19	9
9000	1550	0.54	107	0.33	33	0.21	12
10000	1722	0.60	128	0.37	39	0.24	14
11000	1895	0.66	152	0.40	47	0.26	16
12000	2067	0.72	177	0.44	54	0.28	19
13000	2239	0.78	204	0.48	63	0.31	22
14000	2411	0.84	233	0.51	71	0.33	25
15000	2584	0.90	264	0.55	81	0.36	28
6000	2756	0.96	296	0.59	90	0.38	32
7000	2928	1.02	329	0.62	101	0.40	36
8000	3100	1.08	365	0.66	111	0.43	39
9000	3273	1.14	402	0.70	123	0.45	43
20000	3445	1.20	440	0.73	134	0.47	47
2000	3789	1.32	522	0.81	159	0.52	56
4000	4134	1.44	610	0.88	186	0.57	66
6000	4478	1.56	704	0.95	215	0.62	76
8000	4823	1.00		1.03	245	0.66	86
80000	5167			1.10	277	0.71	97
2000	5512			1.17	311	0.76	109
4000	5856			1.25	347	0.81	122
6000	6201			1.32	384	0.85	135
8000	6545			1.32	423	0.90	149
0000	6890			1.39	464	0.95	163
2000	7234			1.54	506	0.99	178
4000	7579			1.54	500	1.04	193
14000 16000	7923					1.04	209
8000	8268					1.14	226
0000	8612					1.18	243
52000	8957					1.23	261
4000	9301					1.28	279
6000	9646					1.33	298
8000	9990					1.37	317
0000	10335					1.42	337
2000	10679					1.47	358
4000	11024					1.52	379
6000	11368					1.56	400
8000	11713					1.61	422
0000	12057					1.66	445
2000	12402					1.71	468
4000	12746					1.75	492
6000	13091					1.80	516
8000	13435					1.85	541
0000	13780					1.90	566
2000	14124					1.94	592
4000	14469					1.99	618
6000	14813					2.04	645

Q = Power in Watt, v = Flow velocity in metres/second

Heating mode: △ϑ = 5 K (50 °C/45 °C) - 75 — 110 mm

OD x s (ID) — V/I		75 x 7,5 mm	75 x 7,5 mm (60 mm) — 2.83 l/m		n (73 mm) — 4.18 l/m	110 x 10 mm (90 mm) — 6.36 l/m	
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
20000	3445	0.34	22	0.23	9	0.15	3
25000	4306	0.43	32	0.29	13	0.19	5
30000	5167	0.51	45	0.35	18	0.23	6
35000	6029	0.60	59	0.40	23	0.27	8
40000	6890	0.69	75	0.46	29	0.30	11
45000	7751	0.77	92	0.52	36	0.34	13
50000	8612	0.86	112	0.58	44	0.38	16
55000	9474	0.94	132	0.64	52	0.42	19
60000	10335	1.03	155	0.69	60	0.46	22
65000	11196	1.11	178	0.75	70	0.49	26
700000	12057	1.20	204	0.81	80	0.53	29
75000	12919	1.28	231	0.87	90	0.57	33
80000	13780	1.37	259	0.93	101	0.61	37
85000	14641	1.45	289	0.98	113	0.65	41
90000	15502	1.54	321	1.04	125	0.68	46
95000	16364	1.63	353	1.10	138	0.72	50
100000	17225	1.71	388	1.16	151	0.76	55
105000	18086	1.80	423	1.21	165	0.80	60
110000	18947	1.88	460	1.27	179	0.84	66
115000	19809	1.97	499	1.33	194	0.87	71
120000	20670	2.05	539	1.39	210	0.91	77
125000	21531			1.45	226	0.95	83
130000	22392			1.50	242	0.99	89
135000	23254			1.56	260	1.03	95
140000	24115			1.62	277	1.06	101
145000	24976			1.68	295	1.10	108
150000	25837			1.73	314	1.10	115
155000	26699			1.79	333	1.14	122
160000	27560			1.79	353	1.18	122
165000	28421			1.85	373	1.22	136
170000	29282			1.91	394	1.20	138
	30144						
175000				2.02	415	1.33	152
180000	31005					1.37	159
185000	31866					1.41	168
190000	32727					1.45	176
195000	33589					1.48	184
200000	34450					1.52	193
205000	35311					1.56	202
210000	36172					1.60	211
215000	37033					1.64	220
220000	37895					1.67	229
225000	38756					1.71	239
230000	39617					1.75	248
235000	40478					1.79	258
240000	41340					1.83	268
245000	42201					1.86	279
250000	43062					1.90	289
255000	43923					1.94	300
260000	44785					1.98	310
265000	45646					2.02	321

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: △ϑ = 6 K (6 °C/12 °C) - 14 — 16 mm

OD x s (ID) — V/I		14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
-100	14	0.05	12	0.04	5
-200	29	0.10	36	0.07	15
-300	43	0.15	69	0.11	30
-400	57	0.20	112	0.14	48
-500	72	0.25	162	0.18	69
-600	86	0.30	220	0.21	94
-700	100	0.36	286	0.25	122
-800	115	0.41	358	0.28	152
-900	129	0.46	437	0.32	186
-1000	144	0.51	523	0.35	222
-1100	158	0.56	615	0.39	261
-1200	172	0.61	714	0.42	303
-1300	187	0.66	818	0.46	347
-1400	201	0.71	929	0.49	394
-1500	215	0.76	1046	0.53	443
-1600	230	0.81	1169	0.56	495
-1700	244	0.86	1297	0.60	549
-1800	258	0.91	1432	0.63	605
-1900	273	0.96	1572	0.67	664
-2000	287	1.02	1717	0.71	726
-2100	301			0.74	789
-2200	316			0.78	855
-2300	330			0.81	923
-2400	344			0.85	994
-2500	359			0.88	1066
-2600	373			0.92	1141
-2700	388			0.95	1218
-2800	402			0.99	1297
-2900	416			1.02	1379
-3000	431				
-3100	445				
-3200	459				
-3300	474				
-3400	488				
-3400	502				
-3600	517				
-3700	531				
-3700 -3800	545				
-3900	560				
-3900 -4000	574				
-4000	589				
-4100	603				
-4300	617				
-4400	632				
-4500	646				
-4600	660				
-4700	675				
-4800	689				
-4900	703				
-5000	718				

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: △ϑ = 6 K (6 °C/12 °C) - 20 — 32 mm

OD x s (ID)	— V/I	20 x 2,25 mm	n (15,5 mm) — 0.19 l/m	25 x 2,5 mr	n (20 mm) — 0.31 l/m	32 x 2 mm	(26 mm) — 0.53 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
400	57	0.08	15	0.05	4	0.03	1
600	86	0.13	28	0.08	9	0.05	3
800	115	0.17	46	0.10	14	0.06	4
1000	144	0.21	67	0.13	20	0.08	6
1200	172	0.25	91	0.15	28	0.09	8
1400	201	0.30	118	0.18	36	0.11	10
1600	230	0.34	148	0.20	45	0.12	13
1800	258	0.38	181	0.23	55	0.14	16
2000	287	0.42	217	0.25	65	0.15	19
2200	316	0.47	255	0.28	77	0.17	22
2400	344	0.51	297	0.30	89	0.18	26
2600	373	0.55	340	0.33	102	0.20	30
2800	402	0.59	387	0.36	116	0.21	34
3000	431	0.63	436	0.38	131	0.23	38
3200	459	0.68	487	0.41	146	0.24	42
3400	488	0.72	541	0.43	162	0.26	47
3600	517	0.76	597	0.46	179	0.27	52
3800	545	0.80	656	0.48	196	0.29	57
4000	574	0.85	717	0.51	214	0.30	62
4200	603	0.89	780	0.53	233	0.32	68
4400	632	0.93	846	0.56	253	0.33	73
4600	660	0.97	914	0.58	273	0.35	79
4800	689	1.01	984	0.61	294	0.36	85
5000	718	1.01		0.63	316	0.38	91
5500	789			0.70	372	0.41	108
5000 6000	861			0.76	433	0.45	125
6500	933			0.83	498	0.49	144
7000	1005			0.89	567	0.49	163
7500	1005			0.89	639	0.56	184
3000	1148			1.02	715	0.60	206
8500	1140			1.02	796	0.60	208
9000							
	1292			1.14	879	0.68	253
9500	1364			1.21	964	0.71	278
10000	1435			1.27	1058	0.75	304
10500	1507			1.33	1152	0.79	331
11000	1579			1.40	1250	0.83	359
11500	1651			1.46	1352	0.86	388
12000	1722			1.52	1457	0.90	418
12500	1794					0.94	449
13000	1866					0.98	481
13500	1938					1.01	514
14000	2010					1.05	548
14500	2081					1.09	583
15000	2153					1.13	619
16000	2297					1.20	693
17000	2440					1.28	771
18000	2584					1.35	853
19000	2727					1.43	938
20000	2871					1.50	1027
21000	3014					1.58	1120

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: ∆ϑ = 6 K (6 °C/12 °C) - 40 — 63 mm

OD x s (ID) -	— V/I	40 x 4 mm	(32 mm) — 0.80 l/m	50 x 4,5 mm	i (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
4000	574	0.20	23	0.12	7	0.08	3
-6000	861	0.30	47	0.18	15	0.12	5
-8000	1148	0.40	77	0.24	24	0.16	9
-10000	1435	0.50	114	0.30	35	0.20	12
-12000	1722	0.60	156	0.36	48	0.23	17
-14000	2010	0.69	204	0.42	63	0.27	22
-16000	2297	0.79	258	0.48	79	0.31	28
-18000	2584	0.89	317	0.54	98	0.35	35
20000	2871	0.99	382	0.60	117	0.39	42
22000	3158	1.09	452	0.66	139	0.43	49
24000	3445	1.19	527	0.73	162	0.47	57
26000	3732	1.29	607	0.79	186	0.51	66
28000	4019	1.39	692	0.85	212	0.55	75
30000	4306	1.49	781	0.91	101	0.59	85
32000	4593	1.59	876	0.97	269	0.62	95
34000	4880			1.03	299	0.66	106
36000	5167			1.09	331	0.70	117
38000	5455			1.15	364	0.74	129
40000	5742			1.21	399	0.78	141
42000	6029			1.27	435	0.82	153
44000	6316			1.33	472	0.86	167
46000	6603			1.39	511	0.90	180
48000	6890			1.45	551	0.94	194
50000	7177			1.51	592	0.98	209
52000	7464					1.02	224
54000	7751					1.05	239
56000	8038				· · · · · · · · · · · · · · · · · · ·	1.09	255
58000	8325					1.13	272
60000	8612					1.17	289
62000	8900					1.21	306
64000	9187					1.25	324
66000	9474					1.29	342
68000	9761					1.33	360
70000	10048					1.37	379
72000	10335					1.41	399
74000	10622					1.44	419
76000	10909				· · · · · · · · · · · · · · · · · · ·	1.48	439
78000	11196					1.52	460
80000	11483					1.56	481
82000	11770					1.60	503
84000	12057					1.64	525
86000	12344					1.68	547
88000	12632					1.72	570
90000	12032					1.72	594
92000	13206					1.76	618
94000	13493					1.84	642
96000	13780					1.87	666
98000	14067					1.91	691
100000	14354					1.95	717
102000	14641					1.99	742

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: ∆ϑ = 6 K (6 °C/12 °C) - 75 — 110 mm

OD x s (ID) —	– V/I	75 x 7,5 mm	n (60 mm) — 2.83 l/m	90 x 8,5 mn	n (73 mm) — 4.18 l/m	110 x 10 mi	n (90 mm) — 6.36 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
-10000	1435	0.14	6	0.10	2	0.06	1
-15000	2153	0.21	12	0.14	5	0.09	2
-20000	2871	0.28	19	0.19	8	0.13	3
-25000	3589	0.35	28	0.24	11	0.16	4
-30000	4306	0.42	39	0.29	15	0.19	6
-35000	5024	0.49	51	0.33	20	0.22	7
40000	5742	0.56	65	0.38	26	0.25	9
45000	6459	0.63	80	0.43	31	0.28	12
-50000	7177	0.71	96	0.48	38	0.31	14
-55000	7895	0.78	114	0.52	45	0.34	16
-60000	8612	0.85	133	0.57	52	0.38	19
65000	9330	0.92	153	0.62	60	0.41	22
70000	10048	0.99	175	0.67	68	0.44	25
75000	10766	1.06	197	0.71	77	0.47	28
80000	11483	1.13	221	0.76	87	0.50	32
85000	12201	1.20	246	0.81	97	0.53	36
90000	12919	1.27	273	0.86	107	0.56	39
95000	13636	1.34	300	0.91	118	0.60	43
100000	14354	1.41	329	0.95	129	0.63	47
105000	15072	1.48	359	1.00	141	0.66	52
110000	15789	1.55	390	1.05	153	0.69	56
115000	16507	1.62	422	1.10	165	0.72	61
120000	17225	1.69	456	1.10	178	0.72	66
						0.75	70
125000	17943	1.76	490	1.19	192		
130000	18660	1.83	526	1.24	206	0.82	76
135000	19378	1.90	563	1.29	220	0.85	81
140000	20096	1.97	601	1.33	235	0.88	86
145000	20813	2.05	640	1.38	250	0.91	92
150000	21531			1.43	266	0.94	97
160000	22967			1.52	298	1.00	109
170000	24402			1.62	332	1.07	122
180000	25837			1.72	368	1.13	135
190000	27273			1.81	405	1.19	149
200000	28708			1.91	444	1.25	163
210000	30144			2.00	485	1.32	178
220000	31579					1.38	193
230000	33014					1.44	209
240000	34450					1.50	226
250000	35885					1.57	243
260000	37321					1.63	261
270000	38756					1.69	279
280000	40191					1.76	298
290000	41627					1.82	317
300000	43062					1.88	337
310000	44498	· · · · · · · · · · · · · · · · · · ·				1.94	358
320000	45933					2.01	379
330000	47368					2.07	400
340000	48804					2.13	422
350000	50239					2.19	445
	51675						445
-360000	01070					2.26	400

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: △ϑ = 3 K (17 °C/20 °C) - 14 — 16 mm

OD x s (ID) — V/I		14 x 2 mm (10	mm) — 0.08 l/m	16 x 2 mm (12	mm) — 0.11 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m
-50	14	0.05	11	0.04	5
-100	29	0.10	33	0.07	14
-150	43	0.15	64	0.11	27
-200	57	0.20	103	0.14	44
-250	72	0.25	149	0.18	64
-300	86	0.31	203	0.21	86
-350	100	0.36	264	0.25	112
-400	115	0.41	332	0.28	141
-450	129	0.46	405	0.32	172
-500	144	0.51	485	0.35	206
-550	158	0.56	572	0.39	242
-600	172	0.61	664	0.42	281
-650	187	0.66	762	0.46	322
-700	201	0.71	866	0.49	366
-750	215	0.76	975	0.53	412
-800	230	0.81	1090	0.57	460
-850	244	0.86	1211	0.60	511
-900	258	0.92	1337	0.64	564
-950	273	0.97	1468	0.67	619
-1000	287	1.02	1605	0.71	677
-1050	301			0.74	736
-1100	316			0.78	798
-1150	330			0.81	862
-1200	344			0.85	928
-1250	359			0.88	996
-1300	373			0.92	1067
-1350	388			0.95	1139
-1400	402			0.99	1213
-1450	416			1.02	1290
-1500	431				
-1550	445				
-1600	459				
-1650	474				
-1700	488				
-1750	502				
-1800	517				
-1850	531				
-1900	545				
-1950	560				
-1950	574				
-2000 -2050	589				
-2050 -2100	603				
-2150	617				
-2150	632				
-2200 -2250	646				
-2300	660				
-2350	675				
2400	689				
-2450	703				
-2500	718				

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: △ϑ = 3 K (17 °C/20 °C) - 20 — 32 mm

OD x s (ID)	— V/I	20 x 2,25 mn	n (15,5 mm) — 0.19 l/m	25 x 2,5 mm	n (20 mm) — 0.31 l/n	n 32 x 2 mm (26 mm) — 0.53 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
200	57	0.08	13	0.05	4	0.03	1
400	115	0.17	42	0.10	13	0.06	4
600	172	0.25	84	0.15	25	0.09	7
800	230	0.34	138	0.20	41	0.12	12
1000	287	0.42	202	0.25	61	0.15	18
1200	344	0.51	276	0.31	83	0.18	24
1400	402	0.59	361	0.36	108	0.21	31
1600	459	0.68	455	0.41	136	0.24	39
1800	517	0.76	558	0.46	167	0.27	48
2000	574	0.85	671	0.51	200	0.30	58
2200	632	0.93	792	0.56	236	0.33	68
2400	689	1.02	922	0.61	275	0.36	79
2600	746			0.66	316	0.39	91
2800	804			0.71	360	0.42	104
3000	861			0.76	406	0.45	117
3200	919			0.81	454	0.48	131
3400	976			0.86	505	0.51	145
3600	1033			0.92	559	0.54	161
3800	1091			0.97	614	0.57	177
4000	1148			1.02	672	0.60	193
1200	1206			1.07	732	0.63	210
1400	1263			1.12	794	0.66	228
1600	1321			1.17	859	0.69	247
4800	1378			1.22	926	0.72	266
5000	1435			1.27	995	0.75	285
5200	1493			1.32	1066	0.78	306
5400	1550			1.37	1139	0.81	327
5600	1608			1.42	1215	0.84	348
5800	1665			1.47	1293	0.87	370
6000	1722			1.53	1372	0.90	393
6200	1780					0.93	417
5400	1837					0.96	440
600	1895					0.99	465
6800	1952					1.02	490
7000	2010					1.05	516
7200	2067					1.08	542
7400	2124		·			1.11	569
7600	2124					1.14	596
7800	2182					1.14	624
8000	2239					1.17	653
3200	2354					1.20	682
3400	2354					1.25	712
3600	2411					1.20	712
3800	2469					1.29	742
9000	2584					1.35	804
9200	2641					1.38	836
9400	2699					1.41	868
9600	2756					1.44	901
9800	2813					1.47	935
10000	2871					1.50	969

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: ∆ϑ = 3 K (17 °C/20 °C) - 40 — 63 mm

OD x s (ID) -	— V/I	40 x 4 mm ((32 mm) — 0.80 l/m	50 x 4,5 mm	ı (41 mm) — 1.32 l/m	63 x 6 mm	(51 mm) — 2.04 l/m
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
2000	574	0.20	22	0.12	7	0.08	2
-3000	861	0.30	44	0.18	14	0.12	5
4000	1148	0.40	72	0.24	22	0.16	8
5000	1435	0.50	106	0.30	33	0.20	12
6000	1722	0.60	146	0.36	45	0.23	16
7000	2010	0.70	192	0.42	59	0.27	21
8000	2297	0.79	243	0.48	75	0.31	26
9000	2584	0.89	299	0.54	92	0.35	33
10000	2871	0.99	360	0.61	110	0.39	39
11000	3158	1.09	426	0.67	131	0.43	46
12000	3445	1.19	497	0.73	152	0.47	54
13000	3732	1.29	572	0.79	175	0.51	62
14000	4019	1.39	653	0.85	200	0.55	71
15000	4306	1.49	738	0.91	226	0.59	80
16000	4593	1.59	828	0.97	253	0.63	89
17000	4880			1.03	282	0.66	100
18000	5167			1.09	312	0.70	110
19000	5455			1.15	344	0.74	121
20000	5742			1.21	376	0.78	133
21000	6029			1.27	411	0.82	145
22000	6316			1.33	446	0.86	157
23000	6603			1.39	483	0.90	170
24000	6890			1.45	521	0.94	183
25000	7177			1.51	560	0.98	197
26000	7464					1.02	211
27000	7751					1.06	226
28000	8038					1.10	241
29000	8325					1.13	257
30000	8612					1.17	273
31000	8900					1.21	289
32000	9187					1.25	306
33000	9474					1.29	323
34000	9761					1.33	341
35000	10048					1.37	359
36000	10335					1.41	378
37000	10622					1.45	397
38000	10909					1.49	416
39000	11196					1.53	436
40000	11483					1.56	456
41000	11770					1.60	476
42000	12057					1.64	497
43000	12344					1.68	519
14000	12632					1.72	541
45000	12032					1.76	563
46000	13206					1.80	585
47000 47000	13493					1.80	608
47000 58000	13493					1.84	632
49000	13780					1.88	656
	14067					1.92	680
50000	14354					1.96	704

Q = Power in Watt, v = Flow velocity in metres/second

Cooling mode: △ϑ = 3 K (17 °C/20 °C) - 75 — 110 mm

OD x s (ID) — V/I		75 x 7,5 mm (60 mm) — 2.83 l/m		90 x 8,5 mm	n (73 mm) — 4.18 l/m	110 x 10 mm (90 mm) — 6.36 l/m	
Q, W	m, kg/h	v, m/s	R, Pa/m	v, m/s	R, Pa/m	v, m/s	R, Pa/m
-8000	2297	0.23	12	0.15	5	0.10	2
-10000	2871	0.28	18	0.19	7	0.13	3
-12000	3445	0.34	25	0.23	10	0.15	4
-14000	4019	0.40	33	0.27	13	0.18	5
-16000	4593	0.45	41	0.31	16	0.20	6
18000	5167	0.51	51	0.34	20	0.23	7
20000	5742	0.57	61	0.38	24	0.25	9
22000	6316	0.62	72	0.42	28	0.28	10
24000	6890	0.68	84	0.46	33	0.30	12
26000	7464	0.73	97	0.50	38	0.33	14
28000	8038	0.79	111	0.53	44	0.35	16
30000	8612	0.85	125	0.57	49	0.38	18
32000	9187	0.90	141	0.61	55	0.40	20
34000	9761	0.96	157	0.65	61	0.43	23
36000	10335	1.02	174	0.69	68	0.45	25
38000	10909	1.07	191	0.73	75	0.48	28
40000	11483	1.13	209	0.76	82	0.50	30
42000	12057	1.19	228	0.80	89	0.53	33
44000	12632	1.24	248	0.84	97	0.55	36
46000	13206	1.30	269	0.88	105	0.58	39
48000	13780	1.36	290	0.92	113	0.60	42
50000	14354	1.41	312	0.95	122	0.63	45
52000	14928	1.47	335	0.99	131	0.65	48
54000	15502	1.53	358	1.03	140	0.68	51
56000	16077	1.58	382	1.07	149	0.70	55
58000	16651	1.64	407	1.11	159	0.73	58
60000	17225	1.70	432	1.15	169	0.75	62
62000	17799	1.75	459	1.13	179	0.78	66
64000	18373	1.81	485	1.10	190	0.80	70
66000	18947	1.86	513	1.22	200	0.83	74
68000	19522	1.92	541	1.20	211	0.85	74
70000	20096	1.92	570	1.30	223	0.88	82
75000	21531	2.12	645	1.34	252	0.88	92
80000	21551	2.12	045	1.43	283	1.00	104
85000	24402			1.62	315	1.07	116
90000	25837			1.72	349	1.13	128
95000	27273			1.81	385	1.19	141
100000	28708			1.91	422	1.26	155
105000	30144			2.00	461	1.32	169
110000	31579					1.38	183
115000	33014					1.44	199
120000	34450					1.51	215
125000	35885					1.57	231
130000	37321					1.63	248
135000	38756					1.70	265
140000	40191					1.76	283
145000	41627					1.82	302
150000	43062					1.88	321
155000	44498					1.95	340
160000	45933					2.01	360

Q = Power in Watt, v = Flow velocity in metres/second

Sample calculation

Note

For system-connected heating circuits (single-pipe heating) the entire ring volume flow of all radiators must be taken into account!

The selection of the respective pipe dimension depends on the required mass flow (volume flow) for the respective section. Depending on pipe dimension OD x s, the flow velocity v and the pipe friction pressure gradient R change. If the pipe is sized too small, the flow velocity v and the pipe friction pressure gradient R increase. This leads to higher flow noises and higher power consumption of the circulation pump.

Radiator connection pipe: v ≤ 0.3 m/s

We therefore recommend that the following speed guide values are not exceeded when designing the pipe network:

- Radiator connection pipe: v ≤ 0.3 m/s
- Heating distribution pipes: v ≤ 0.5 m/s
- Heating riser and cellar pipes: v ≤ 1.0 m/s

The pipe network must be designed in such a way that the flow velocity from the boiler to the most distant radiator decreases evenly. The guide values for the flow velocity must be observed.

The following tables show the maximum transferable heat output QN, taking into account the maximum flow velocity, depending on the type of piping, the expansion $\Delta \vartheta$ and the pipe dimension OD x s.

14 x 2	16 x 2	20 x 2.25	25 x 2.5	32 x 3
85	122	204	339	573
493	710	1185	1972	3333
986	1420	2369	3944	6666
1479	2130	3554	5916	9999
1972	2840	4738	7889	13332
2465	3550	5923	9861	16665
	85 493 986 1479 1972	NUL NUL 85 122 493 710 986 1420 1479 2130 1972 2840	85 122 204 493 710 1185 986 1420 2369 1479 2130 3554 1972 2840 4738	NAME NAME NAME 85 122 204 339 493 710 1185 1972 986 1420 2369 3944 1479 2130 3554 5916 1972 2840 4738 7889

Heating distribution pipes: $v \le 0.5$ m/s

Pipe OD x s [mm]	14 x 2	16 x 2	20 x 2.25	25 x 2.5	32 x 3	40 x 4
Mass flow ṁ (kg/h)	141	204	340	565	956	1448
Heat output Q_N (W) at $\Delta \vartheta$ = 5 K	822	1183	1974	3287	5555	8414
Heat output Q_N (W) at $\Delta \vartheta$ = 10 K	1643	2367	3948	6574	11110	16829
Heat output Q_N (W) at $\Delta \vartheta$ = 15 K	2465	3550	5923	9861	16665	25243
Heat output Q_N (W) at $\Delta \vartheta$ = 20 K	3287	4733	7897	13148	22219	33658
Heat output Q_N (W) at $\Delta \vartheta$ = 25 K	4109	5916	9871	16434	27774	42072

Heating riser and cellar pipes: v ≤ 1.0 m/s

Pipe OD x s [mm]	14 x 2	16 x 2	20 x 2.25	25 x 2.5	32 x 3	40 x 4
Mass flow ṁ (kg/h)	283	407	679	1131	1911	2895
Heat output Q_N (W) at $\Delta \vartheta$ = 5 K	1643	2367	3948	6574	11110	16829
Heat output Q_N (W) at $\Delta \vartheta$ = 10 K	3287	4733	7897	13148	22219	33658
Heat output Q _N (W) at $\Delta \vartheta$ = 15 K	4930	7100	11845	19721	33329	50487
Heat output Q_N (W) at $\Delta \vartheta$ = 20 K	6574	9466	15794	26295	44439	67316
Heat output Q_N (W) at $\Delta \vartheta$ = 25 K	8217	11833	19742	32869	55548	84144

Example

Calculation of mass flow m (kg/h)	Where:
$\dot{m} = Q_N / [c_W x (\vartheta_{VL} - \vartheta_{RL})]$	c_w = specific heat capacity of hot water \approx 1.163 Wh/(kgK)
m = 1977 W/[1.163 Wh/(kg K) x (70 °C - 50 °C)]	ϑ_{VL} = Flow temperature in °C
m = 85 kg/h	ϑ_{RL} = Return flow temperature in °C
	Q_N = Rated power in W

12 Pressure and leak testing of Uponor heating installations

The following procedures describe the pressure and leak test for Uponor composite pipes and PE-Xa installation systems. Separate instructions and test protocols are available for pressure and leak testing of Uponor surface systems.

12.1 Leak test for heating installations with water

The heating engineer/installer must subject the heating pipes to a leak test after installation and before closing the wall slots, wall and ceiling openings and, if necessary, applying the screed or another covering. As a rule, tap water can be used for the leak test. The water should meet the requirements of VDI 2035. The heating system must be filled slowly and vented completely.

If there is a risk of freezing, suitable measures must be taken (e.g. use of antifreeze or temperature control of the building). If frost protection is no longer required for the intended operation of the system, antifreeze agents must be removed by draining and flushing the system with at least three (3) water changes.


The piping system and water heating systems must be tested at a pressure corresponding to the set pressure of the safety valve (DIN 18380, VOB). Alternatively, 1.3 times the operating pressure can be used as the test pressure for the pressure test in accordance with DIN EN 14336. Only pressure gauges which allow problem-free reading of a pressure change of 0.1 bar should be used. The pressure gauge should be placed at the lowest point of the system if possible.

The temperature compensation between ambient temperature and filling water temperature shall be taken into account by a corresponding waiting time after the test pressure has been established. If necessary, restore the test pressure after the waiting period. The test pressure must be maintained for two (2) hours and may not drop by more than 0.2 bar. No leaks must occur during that time.

The leak test must be documented in a pressure test report by the responsible specialist, taking into account the materials used. The tightness of the system must be verified and confirmed.

This report is available at the Uponor services download center.

https://www.uponor.com/doc/1120121

12.2 Leak test for heating installation with compressed air or inert gas

A pressure test for heating installations can be carried out with compressed air or inert gas in accordance with DIN EN 14336 or in accordance with the ZVSHK data sheet "Leak tests of drinking water distribution systems with compressed air, inert gas or water".

To document the test, the "leak test protocol for Uponor drinking water distribution - test medium: Compressed air or inert gases" is applicable.

This report is available at the Uponor services download center.

https://www.uponor.com/doc/1120118

13 General planning principles

13.1 Fire protection requirements

In Germany, the structural requirements for fire protection are a matter for the federal states, and are regulated in the state building regulations. Despite the introduction of a model building code MBO in 2002 and the fact that the model directive on the fire protection requirements MLAR 11/2005 was adopted as the cable installation directive in almost all federal states, there are still minor differences between the implementation requirements of the federal states.

In order to standardise the state building regulations, however, the paragraphs § 14 "Fire protection" and § 40 "Cables, piping systems, installation shafts, installation ducts" were essentially incorporated into the state building regulations as well as into the DVO and IVV implementation/execution regulations of the federal states.

Paragraph 14 makes all persons and companies involved in the project responsible. The terms "to order", "to erect", "to maintain" and "to change" are used here to address planners, architects and contractors as well as building owners or building operators who are under an ongoing obligation to maintain fire protection systems.

In order to guarantee preventive fire protection, the choice of the right building materials is existentially important. The selection of building materials is regulated in DIN 4102 (Fire behaviour of building materials and components), and this standard also contains a list of technical building regulations which must be observed.

In addition to DIN 4102, the European standard DIN EN 13501 "Classification of construction products and types of construction with regard to their reaction to fire" is also valid in Germany.

For the installation of a pipeline installation, the pipeline system guidelines (MLAR/LAR/RbALei) offer the possibility of installing sealing systems (e.g. fire protection sleeves and fire protection insulation) to comply with fire protection requirements. In the case of fire protection sealing systems, the installation rules of the general test certificates issued by the building authorities must be observed.

In addition, a declaration of conformity must be completed for each installation variant. Samples of these declarations of conformity are available from the respective product manufacturer. In the case of general approvals by the building authorities, type plates must also be mounted next to the partitioning systems.

13.2 Pipe insulation

Note

The planner and processor must be familiar with the relevant in force and continuously updated guidelines and laws of the federal states.

Insulation of pipelines reduces heat loss of heated water (PWH, PWH-C, heating pipelines) and reduces heating of cold drinking water (PWC) in pipes. However, insulation or cladding can also be useful or necessary against corrosion, condensation and sound transmission. The insulation requirements in new buildings as well as in existing buildings for hot and cold pipes are described in various standards and Ordinances (EnEV, DIN EN 806 - 2, DIN 1988-200).

Factory pre-insulated Uponor installation pipes offer decisive advantages over pipes insulated on site. On the one hand, they ensure rapid construction progress and at the same time they ensure that the insulation suitable for the specific insulation requirement will be used. The good thermal insulation properties of the insulation materials used allow small outside cut out diameters with optimum thermal insulation. By using eccentrically pre-insulated heating pipes in the floor structure, the required installation height can also be considerably reduced compared to comparable all-round insulation. This rectangular insulation can also be better integrated into the floor insulation.

14 Pressing tools for fitting assembly

14.1 System description

The Uponor system concept is based on the perfect interaction of all individual system components. Everything fits together and has been tested and approved by us for the respective area of application. In addition to high-quality installation components such as pipes, fittings and assembly accessories, we attach great importance to reliable and practical tool technology which is matched to the Uponor fitting systems. For example, the press jaws and press chains have the same dimension-specific colour coding as the Uponor press fittings so that nothing can be confused on the construction site. Uponor pressing tools are an integral part of the Uponor declaration of liability and enable safe and uncomplicated fitting assembly.

- Proven press machines and press jaws from renowned manufacturers
- Pressing machines optionally as battery, 230 V or manual press pliers
- Dimension-specific color coding of the press jaws
- Part of the Uponor declaration of liability

14.2 Uponor pressing tool concept

Uponor press jaws MLC UPP1

Uponor press jaws MLC UPP1 with battery pressing machine UP 110 (as well as UP 75 and EL UP75)

Markings on the press jaw

Ito

nem	Description
A	Dimension
В	Maintenance sticker
С	Colour code dimension-specific

Uponor press jaws MLC Mini KSP0

Markings on the press jaw UPP1

Item	Description
A	Dimension
В	Maintenance sticker
С	Colour code dimension-specific

Dimension-specific colour coding

Colour coding of Uponor S-Press PLUS fittings 16 - 32 mm

The colour coding on the Uponor press fittings and the Uponor press jaws indicates the associated dimensions.

Uponor press jaws MLC Mini KSP0 with battery pressing machine Mini2

14.3 Overview tools for fitting assembly

Item	Description
A	Manual pressing tool + Interchangeable inserts
В	UP 110, battery tool or UP 75 EL, electrical tool 230 V + UPP1, pressing jaw
С	UP 110, battery tool or UP 75 EL, electrical tool 230 V + UPP1, pressing jaw
D	UP 110, battery tool or UP 75 EL, electrical tool 230 V + Basic press jaw with press chain
E	Mini2, battery tool + Mini KSP0, pressing jaw
F	Fixed wrench
G	Use only hands, no tools required

Uponor fittings A B C D E F G $16-20$ $16-32$ $ 16-32$ $ -$ <t< th=""><th></th><th>11</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		11						
$\begin{array}{c cccc} 16-20 & 16-32 & - & - & 16-32 & - & - \\ \hline S-Press PLUS PPSU \\ \hline \\ \hline \\ \hline \\ S-Press PLUS PPSU \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$		Uponor tools	_		-	_	-	-
$\frac{S-Press PLUS}{S-Press PLUS PPSU}$ $14-20 14-32 - - 14-32 - - - - - - - - - $	Uponor fittings			C	D		F	G
S-Press S-Press I - - - I - <th< td=""><td>P0002/4</td><td>16 — 20</td><td>16 — 32</td><td>_</td><td>-</td><td>16 — 32</td><td>_</td><td>_</td></th<>	P0002/4	16 — 20	16 — 32	_	-	16 — 32	_	_
$\frac{S-Press}{1 - \frac{1}{2} -$	S-Press PLUS S-Press PLUS PPSU							
40-50 63-75	18 4000128	14—20	14 — 32	_	_	14 — 32	_	_
Process	S-Press							
	-	_	_	40 — 50	63 — 75	_	_	
S-Press S-Press PPSU	S-Press S-Press PPSU							
	Peccost	_	F0000129	PI000082	Гтосот/9	FP000129	_	_
RS 16 - 32 40 - 50 63 - 110 16 - 32	RS		16 — 32	40 — 50	63 — 110	16 — 32		

	Uponor tools						
Uponor fittings	Α	В	С	D	E	F	G
PODDES	_	_	_	_	_	14 — 25	_
Uni							
Records	_	_	_	_	_	_	16 — 25
RTM							

14.4 List of recommendations

Caution!

This list does not apply to the GAS multilayer pipe system and its use in gas installations.

Uponor UPP1 pressing jaws and pressing chain are specially designed for use in conjunction with the Uponor UP 110 (1083612) and UP 75 battery-powered pressing machines and the Uponor UP 75 EL (1007082) electric pressing machine. Uponor Mini KSP0

pressing jaws are specially designed for use in conjunction with the Uponor Mini and Mini2 battery-powered pressing machines. When using other brands of pressing machines, you should have their suitability, warranty and occupational safety confirmed by the respective manufacturer. All Uponor press jaws are subject to an inspection cycle, described in the operating instructions. For use in drinking water distribution and heating installations, we recommend an inspection of the press jaws every 3 years.

Machine type (for Uponor UP 110 & UP 75)

Machine type (f	or Uponor UP 110 & UP 75)	Uponor press	jaw dimensions	
Manufacturer	Attributes	Type 14-32	Type 40–50	Type 63-110*
Viega Type 2	Type 2, serial number starting with 96; lateral linkage for bolt monitoring	yes	no	no
Mannesmann "Old"	Type EFP 1; head not rotatable	yes	no	no
Mannesmann "Old"	Type EFP 2; head rotatable	yes	no	no
Geberit "New"	Type PWH - 75; blue sleeve over press jaw holder	yes	no	no
Novopress	ECO 1 / ACO 1	yes	yes	no
	ACO 201 / ACO 202 / ACO 203	yes	yes	no
	ECO 201 / ECO 202 / ECO 203	yes	yes	no
	AFP 201 / EFP 201	yes	yes	no
	AFP 202 / EFP 202	yes	yes	no
Milwaukee	Milwaukee M18 HPT	yes	yes	no
	Milwaukee M18 BLHPT	yes	yes	no
Ridge Tool by Arx	Ridgid RP300 Viega PT2 H	yes	no	no
	Ridgid RP300 B Viega PT3 AH	yes	yes	no
	Viega PT3 EH	yes	yes	no
	Ridgid RP 10B	yes	yes	no
	Ridgid RP 10S	yes	yes	no
	Ridgid RP 330C Viega Pressgun 4E	yes	yes	no
	Ridgid RP 330B Viega Pressgun 4B	yes	yes	no
	Ridgid RP 340B/C	yes	yes	no
	Viega Pressgun 5B	yes	yes	no
Rems	REMS Akku-Press ACC (Art. No. 571004/571014)	yes	yes	no
	REMS Power-Press ACC (Art. No. 577000/577010)	yes	yes	no
	REMS ACC 22V	yes	yes	no
Rothenberger	Romax 3000 AC	yes	no	no

Machine type (for Uponor UP 110 & UP 75)		Uponor press j	Uponor press jaw dimensions		
Manufacturer	Attributes	Type 14–32	Type 40–50	Type 63-110*	
	Romax 4000	yes	no	no	
Klauke	UAP3L / UAP2 / UNP2	yes	yes	no	
Hilti	NPR 032 IE-A22 (Inline) NPR 032 PE-A22 (Pistol)	yes	yes	yes	

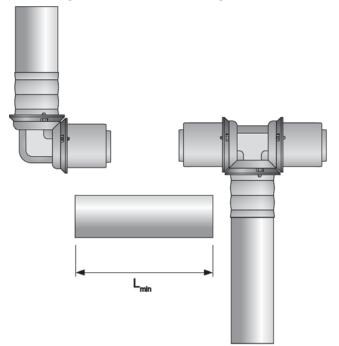
* with modular press chains

Machine type (for Uponor Mini and Mini2)		Uponor press jaw dimensions			
Manufacturer	Attributes	Туре 14–32	Туре 40–50	Type 63-110*	
Klauke	MAP1 / MAP2L	yes	no	no	

* with modular press chains

15 General processing instructions

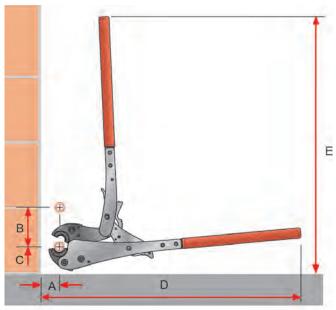
15.1 Installation instructions


	Note
	Installation must be performed by a competent person in accordance with local standards and regulations.
	Note
•	Installation and operation manuals are included with the products or can be downloaded from the Uponor website: www.uponor.com.

Before installation, the installer must check all components for possible transport damage and read, understand and observe the relevant installation and operating manuals.

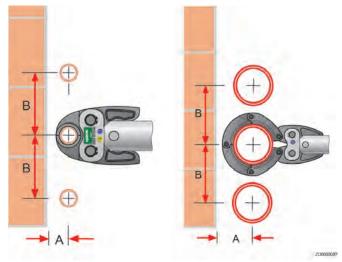
For the professional use of the Uponor composite pipe system, the applicable technical regulations and worksheets of the DVGW and the building regulations must also be observed. The installation must be carried out in accordance with generally recognised engineering practices. In addition, all installation, accident prevention and safety regulations must be observed.

Installation dimensions: minimum requirements


Pipe length between two fittings

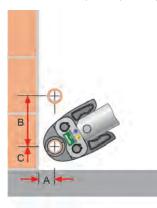
Pipe OD × s [mm]	Min. pipe length L _{min} between two		
	Press fittings [mm]	RTM fittings [mm]	
14 x 2.0	50	_	
16 x 2.0	50	50	
20 x 2.25	55	55	
25 x 2.5	70	60	
32 x 3.0	70	85	
40 x 4.0	100	_	

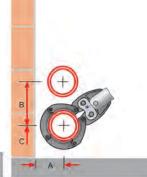
Pipe OD × s [mm]	Min. pipe length L_{min}	between two
	Press fittings [mm]	RTM fittings [mm]
50 x 4.5	100	—
63 x 6.0	150	—
75 x 7.5	150	—
90 x 8.5	160	—
110 x 10.0	160	_


Minimum space requirement for hand press pliers

Pipe OD × s [mm]	Dim. A [mm]	Dim. B* [mm]	Dim. C [mm]	Dim. D [mm]	Dim. E [mm]
14 × 2.0	25	50	55	510	510
16 × 2.0	25	50	55	510	510
20 × 2.25	25	50	55	510	510

* For equal pipe outer diameters

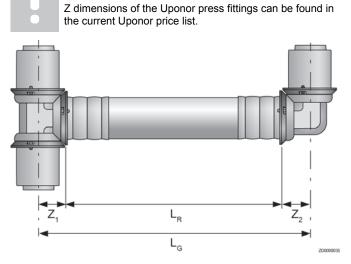

Pressing process with pressing machines (UP 110, UP 75, UP 75 EL, Mini2 and Mini 32)



Pipe OD × s [mm]	Dim. A [mm]	Dim. B* [mm]
14 x 2.0	15	45
16 x 2.0	15	45
20 x 2.25	18	48
25 x 2.5	27	71
32 x 3.0	27	75
40 x 4.0	45	105
50 x 4.5	50	105
63 x 6.0**	80	125
75 x 7.5 **	82	130
90 x 8.5**	95	140
110 x 10.0**	105	165

* For equal pipe outer diameters

** Modular RS-System, pressing on the working bench possible



Pipe OD × s [mm]	Dim. A [mm]	Dim. B* [mm]	Dim. C [mm]
14 x 2.0	30	88	30
16 x 2.0	30	88	30
20 x 2.25	32	90	32
25 x 2.5	49	105	49
32 x 3.0	50	110	50
40 x 4.0	55	115	60
50 x 4.5	60	135	60
63 x 6.0	80	125	75
75 x 7.5	82	130	82
90 x 8.5	95	140	95
110 x 10.0	105	165	105

* For equal pipe outer diameters

Note

15.2 Installation according to Z dimension

As the basis for efficient planning, work preparation and prefabrication, the Z-measurement method makes work considerably easier and saves the fabricator money.

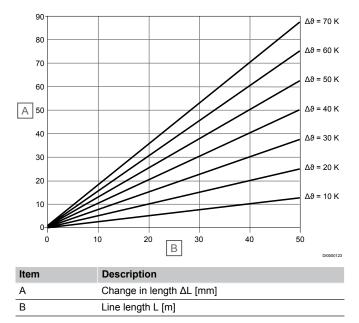
The basis for the Z-measurement method is measuring uniformly. All the routes to be created are recorded via the axial line by measuring from centre to centre (intersection of the axial lines).

(Example: $L_R = L_G - Z_1 - Z_2$).

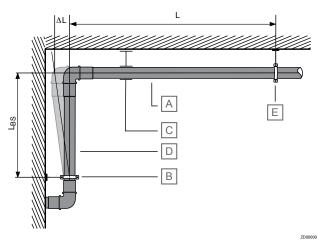
Using the Z-dimension data for Uponor S-Press /PLUS fittings, the installer can quickly and easily calculate the exact pipe length between fittings using a mathematical method. By precise clarification of the pipe routing and coordination with the architect, planner and construction management in the run-up to the actual installation, large parts of the system can be cost-effectively pre-assembled.

15.3 Consideration of thermal length expansion

The thermal length expansions that result from changing operating temperatures are primarily dependent on the temperature difference $\Delta\vartheta$ and the pipe length L.


The linear expansion of Uponor multi-layer composite pipes must be taken into account for all installation variants, particularly for freely movable pipes and cellar distribution and riser pipes, in order to avoid excessive stresses in the pipe material and damage to the connections.

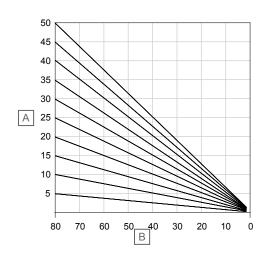
The change in length can be determined using a diagram or calculated using the following formula: $\Delta L = a \times L \times \Delta \vartheta$

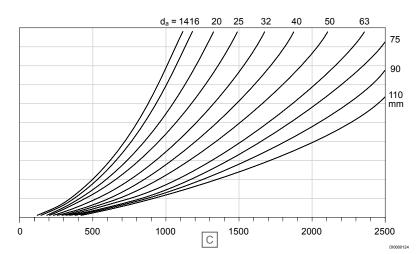

Here:

- ΔL = Linear expansion (mm)
- a = Linear expansion coefficient (0.025 mm/mK)
- L = Line length (m)
- Δϑ = Temperature difference (K)

Length change diagram for Uponor composite pipes

15.4 Cellar distribution and riser pipes


Item	Description
A	Expansion leg
В	Fixed point
С	Sliding clamp
D	Bending leg
E	Fixed point
L	Length of bending leg in m
L _{BS}	Bending leg length in mm


When planning and laying cellar distribution and riser pipes with the Uponor composite pipe system, not only the structural requirements but also the thermal expansion in length must be taken into account.

Uponor multi-layer composite pipes must not be installed rigidly between two fixed points. The change in length of the pipes must always be absorbed or guided.

Uponor multi-layer composite pipes which are exposed to full thermal expansion must be given a corresponding expansion compensation. This requires knowledge of the location of all fixed points. Compensation is always performed between two fixed points (FP) and changes in direction (bending leg).

15.5 Determination of the bending leg length

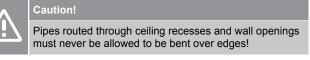
Item	Description
A	Length of expansion leg L (m)
В	Temperature difference $\Delta \vartheta$
С	Bending leg length L _{BS} [mm]

Reading example

Description	Value
Installation temperature	20 °C
Operating temperature	0° C
Temperature difference $\Delta \vartheta$	40 K
Length of bending leg	25 m
Pipe dimension OD x s	32 × 3 mm
Required bending leg length LBS	approx. 850 mm

Calculation formula:

Description	Value
L _{BS}	k √OD (Δϑ a L)
OD	Pipe outer diameter in mm
L	Length of bending leg in m
L _{BS}	Bending leg length in mm
а	Coefficient of linear expansion [0.025 mm/mK]
∆ϑ	Temperature difference in K
k	30 (material constant)


15.6 Bending Uponor composite pipes

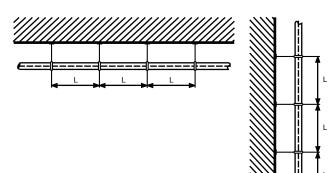
Caution! The hot bending of Uponor composite pipes using open flames (e.g. soldering flame) or other heat sources (e.g. hot air gun, industrial hairdryer) is not permitted! Repeated bending around the same bending point is also prohibited!

Uponor composite pipes 14 - 32 mm can be bent by hand, with the bending spring or bending tool. The minimum bending radii in the

following table must be respected. For bending larger Uponor composite pipe dimensions, please contact Uponor. If narrower deflections than the minimum bending radius are required (e.g. at the transition from the floor to the wall), the flow-optimised Uponor bends or the Uponor 90° angle fittings should be used. If an Uponor composite pipe is inadvertently bent or otherwise damaged, it must be replaced immediately or an Uponor press or screw coupling installed.

Bending radii with/without auxiliary equipment

Uponor Uni Pipe PLUS bending tool. Complete with case and bending segments 16 — 32 mm.


Pipe OD × s [mm]	Pipe type	Min. bending radius without tools (by hand) [mm]		Min. bending radius with internal bending spring ²⁾ [mm]		Min. bending radius with external bending spring [mm]		Min. bending radius with bending tool ¹⁾ [mm]	
		Coil	Bar	Coil	Bar	Coil	Bar	Coil	Bar
14 × 2.0	Uni Pipe PLUS	70	—	56	_	56	_	46	_
16 × 2.0	Uni Pipe PLUS	64	64	48	48	48	48	32	32
20 × 2.25	Uni Pipe PLUS	80	80	60	60	60	60	40	40
25 × 2.5	Uni Pipe PLUS	125	125	75	75	75	75	62.5	62.5
32 × 3.0	Uni Pipe PLUS	160	_	96	_	_	_	80	80

1) Follow the operating instructions for the tools

2) Not recommended for hygienic reasons when using drinking water Bending radii for Uponor composite pipes with and without auxiliary

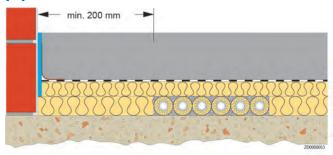
15.7 Fixation distances

equipment

Pipe OD × s [mm]	Max. fastening distance between the pipe clamps L [m]					
	Horizontal	Horizontal				
	Coil Bar					
14 × 2.0	1.20	_	1.70			
16 x 2.0	1.20	2.00	2.30			
20 x 2.25	1.30	2.30	2.60			
25 x 2.5	1.50	2.60	3.00			
32 x 3.0	1.60	2.60	3.00			
40 x 4.0	_	2.00	2.20			
50 x 4.5	_	2.00	2.60			
63 x 6.0	_	2.20	2.85			
75 x 7.5	_	2.40	3.10			
90 x 8.5	_	2.40	3.10			
110 x 10.0	_	2.40	3.10			

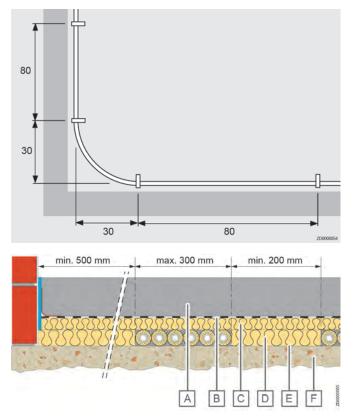
If the Uponor composite pipes are laid freely on the ceiling with pipe clamps, no supporting shells need to be used. The following table shows the maximum fixing distance "L" between the individual pipe clamps for the different pipe dimensions. Type and distances for pipe fastening depend on pressure, temperature and medium. Pipe fixing points must be laid out based on the total mass (weight of pipe + weight of medium + weight of insulation) in accordance with recognised engineering practices. It is recommended to place the pipe fasteners as close as possible to the fittings.

Valve and device connections as well as connections of measuring and control equipment must always be torsion-proof.All pipelines must be routed in such a way that thermal expansion (heating and cooling) is not impeded.The change in length between two fixed points can be absorbed by expansion bends, compensators or by changing the direction of the pipeline.


15.8 Pipeline laying on the raw floor

When laying pipelines on a raw concrete ceiling, generally recognised engineering practices must be observed. Impact sound insulation must be installed in accordance with the DIN 4109 standard "Sound insulation in building construction". The insulation regulations according to the Energy Saving Ordinance EnEV and the technical regulations for drinking water distribution (TRWI) DIN 1988-200 must be observed. The thermal mobility of pipelines during thermal expansion must also be taken into account (see section "Thermal expansion"). If screeds are applied to insulation layers (floating screed), DIN 18560-2 "Screeds in the building industry" must be observed in particular. In DIN 18560-2: 2009-09, the following statements are made (Point 4.1 Load-bearing substrate):

- The load-bearing substrate must be sufficiently dry to accommodate the floating screed and have an even surface.
 Flatness and angular tolerances must comply with DIN 18202. It must not have any point elevations, pipelines or the like which could lead to acoustic bridges and/or fluctuations in the thickness of the screed.
- For heated screeds made of prefabricated elements, the manufacturer's special requirements regarding the evenness of the load-bearing substrate must also be observed.
- If pipelines are laid on the load-bearing substrate, they must be fixed. A level surface for the absorption of the insulation layer but at least for the impact sound insulation - must be created again by means of compensation. The construction height required for this must be planned in.
- Levelling layers must have a bonded form when installed. Bulk materials may be used if their usefulness has been proven.
 Pressure-resistant insulating materials may be used as levelling layers.
- Waterproofing against soil moisture and non-pressing water must be determined by the building planner and must be carried out before the screed is installed (see DIN 18195-4 and DIN 18195-5).


The Uponor composite pipes and the other installations on the unfinished concrete floor should be guided in a straight line, parallel to the axis and wall and as free from crosses as possible. Preparation of an installation plan before the installation of the pipe routes and other installations will facilitate installation.

Fastening distances when laying pipelines

Distance from wall to pipe/pipe routes including insulation and screed in corridors

Pipe routing

Distance from wall to pipe/pipe routes including insulation and screed in rooms other than corridors

Item	Description
A	Screed
В	Moisture barrier
С	Step sound protection
D	Levelling material
E	Bound fill
F	Unfinished concrete ceiling

Pipes and other installations in the floor structure must be planned free of crossings. Pipes on the unfinished floor should be as straight as possible and parallel to the axis and wall. The following route dimensions for pipelines and other installations should be observed:

Application	Width or distance dimension
Route width of parallel pipelines including pipe insulation	≤ 300 mm

When installing Uponor composite pipes on an unfinished concrete ceiling, a fixing distance of 80 cm is recommended. Before and after each bend a fastener must be placed at a distance of 30 cm. Pipe crossings are to be fixed. Fastening can be carried out with the plastic dowel hooks for single or double pipe fixing. If perforated tape is used for fastening, care must be taken to ensure that the Uponor multi-layer composite pipe remains freely movable with/without protective tube or insulation. If the pipe is firmly fixed, noises can occur during the thermal expansion of the pipe. If the Uponor composite pipe system is laid directly in the screed, the fittings must be protected against corrosion with suitable measures. Joints must also be arranged above construction joints in the insulation layer and in the screed (expansion joints) to prevent damage to the screed and floor coverings. Uponor multi-layer composite pipes which cross building joints must be sheathed in the joint area at least with the longitudinally slotted Uponor joint protection tube (each side of the expansion joint 20 cm).

Application	Width or distance dimension
Width of the support next to a route (with the narrowest possible pipe laying next to each other)	≥ 200 mm
Distance from wall to pipe/pipe route including insulation as support for screed in rooms other than corridors	≥ 500 mm
Distance from wall to pipe/pipe route including insulation as support for screed in corridors	≥ 200 mm

15.9 Installation under mastic asphalt

Caution!

The cold water must circulate continuously through the pipe to detect any damage when the mastic asphalt is applied.

Caution!

It must always be ensured that the Uponor composite pipe system does not come into contact with the mastic asphalt. The protective measures described must ensure that the maximum temperature on the pipe surface does not exceed 95 °C! In general, DIN 18560 "Screeds in the building industry", the specifications of the mastic asphalt manufacturer, the duty of care of the mastic asphalt applicator, DIN 4109 "Sound insulation in building construction" and recognised engineering practices apply.

Floor construction with mastic asphalt

Item	Description
А	Poured asphalt-resistant edge insulation strip
В	Poured asphalt
С	Overlapped ribbed board or wool felt coarse board
D	Pour asphalt-resistant mineral sheet
E	Levelling material
F	Bound fill
G	Unfinished concrete ceiling
Н	(Pre)insulated Uponor composite pipe

Mastic asphalt is brought into the room at a temperature of up to 230 °C. The composite pipe and all other temperature-sensitive plastic parts must therefore be protected. The edge insulation strip belonging to the Uponor system is not permitted for the placement of mastic asphalt. For this application there are special mineral fibre edge insulation strips suitable for asphalt, which can be procured by the customer.

The Uponor composite pipe system can be used in conjunction with mastic asphalt if the following precautions are observed.

The non-insulated Uponor composite pipe must at least be laid in a protective tube. The use of pre-insulated Uponor composite pipes is recommended in order to meet the requirements of DIN 1988 and the EnEV energy saving regulations.

The pipe system must be filled with cold water and pressurised to detect any damage when the mastic asphalt is applied.

The installation of a poured asphalt screed over Uponor pipes can be carried out in compliance with the following floor structure (from bottom to top):

- Raw concrete ceiling on which Uponor composite pipe in a protective tube or pre-insulated Uponor composite pipe is laid
- Perlite fill as levelling layer up to top edge of protective tube or pipe insulation
- Rock wool mat (suitable for mastic asphalt) with a thickness of at least 20 mm, WLG 040
- Mastic asphalt, application temperature about 230 °C

System components (pipes and fittings) which may come into contact with mastic asphalt (e.g. around the seal under a radiator) must be sheathed with 50 % insulation (at least 20 mm thick) of fire protection class A1 (non-combustible) in accordance with DIN 4102 (e.g. with Rockwool insulating shell RS 835/Conlit 150 P/U). The non-combustible insulation must completely enclose the Uponor composite pipe and the Uponor fittings. The joints of the insulation shells and the transition from heat-resistant thermal or impact sound insulation (suitable for mastic asphalt) to non-combustible pipe

insulation must be covered with a temperature-resistant adhesive tape (e.g. aluminium adhesive tape). Alternatively, the insulation shells around the pipe can also be fixed with binding wire.

These measures protect the Uponor composite pipe system from heat radiation and from direct contact with the mastic asphalt. Parts of the line protruding from the ground must be protected from direct contact with mastic asphalt or heat radiation. After the mastic asphalt has hardened and cooled, the mineral wool in the visible area of the Uponor composite pipe or radiator connection is removed. The use of a floor rosette is recommended for a clean finish.

16 Transport, storage and processing conditions

16.1 General information

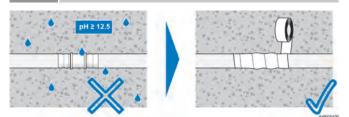
The Uponor composite pipe system is designed in such a way that maximum system safety is achieved when used as intended. All components of the system must be transported, stored and processed in such a way that proper functioning of the installation is guaranteed. The system components should be stored in a systemrelated manner to avoid confusion with components from other application areas. In addition to the following instructions, the instructions in the respective assembly instructions for the individual system components and tools must also be observed.

16.2 Processing temperatures

The permissible processing temperature for the Uponor composite pipe system (pipes and fittings) is between -10 °C and +40 °C. The permissible temperature ranges for the pressing tools can be found in the respective operating instructions of the devices.

16.3 Uponor composite pipes

The pipes must be protected from mechanical damage, dirt and direct sunlight (UV radiation) during transport, storage and processing. The pipes should therefore be kept in their original packaging until they are processed. This also applies to remnants intended for further use. The pipe ends must be closed until processing to prevent dirt from entering the pipes. Damaged, bent or deformed pipes must not be processed. Tubular cartons with ring bundles can be stacked up to a max. stacking height of 2 m. The bar stock must be transported and stored in such a way that it cannot bend. The corresponding Uponor storage instructions must be observed.


16.4 Uponor fittings

Uponor fittings must not be thrown or otherwise handled improperly. Fittings should be kept in their original packaging until processed to prevent damage and contamination. Damaged fittings or fittings with damaged O-rings must not be processed.

16.5 Installation in the ground and outdoors

Caution!

In the case of permanent exposure to moisture and a simultaneous pH value greater than 12.5, Uponor fittings must be protected with a suitable jacket (e.g. insulating tape or shrink sleeve).

Uponor composite pipes can be laid in the ground or outdoors with the appropriate jointing technique, taking the following points into account: Pipelines laid in the ground must not be exposed to traffic loads.

- No coarse-grained, sharp-edged material may be used for backfilling the trench.
- When laying the pipes in the ground, care must be taken to ensure that the Uponor composite pipes are protected from mechanical influences.
- Fittings and thus also the cutting edges of the composite pipes must be protected from direct contact with the ground by means of suitable corrosion protection tapes.
- For outdoor use aboveground, Uponor composite pipes must be protected against increased UV radiation outdoors and against mechanical influences. This is best done using UV-protected corrugated protective tubes, which Uponor offers in various dimensions to suit.

17 System compatibility

In the history of Uponor, the composite pipe has been supplied in various variants:

- Red Unipipe F composite pipe (PE-MD/AL/PE-MD) for underfloor heating installation
- Brown Unipipe S composite pipe (PE-X/AL/PE-X) for drinking water distribution
- White Unipipe H composite pipe (PE-X/AL/PE-X) for heating installations

Since the beginning of 1997, the white Uponor MLC composite pipe (PE-RT/AL/PE-RT) has been supplied for all applications (sanitary, heating and surface heating installations).

In the event that systems with Uponor MLC composite pipes with dimensions of 16 - 32 mm are to be extended or repaired, the current Uponor S-Press/S-Press PLUS fittings can be used to switch to the current Uponor Uni Pipe PLUS composite pipe.

17.1 Transitions from Unipipe old installations

Old installation (until 1997)		Fitting designation	New installation	New installation		
Pipe designation	Application	Colour	Dimension		Pipe designation	Application
Unipipe F	Underfloor heating	Red	16 mm	Uponor Uni-X Reno transition MLC	Uponor Uni Pipe PLUS	Drinking water, heating
Unipipe S	Potable water	Brown	16 — 20 mm	Uponor Uni-X Reno transition MLC	Uponor Uni Pipe PLUS	Drinking water, heating
Unipipe H	Heating	White	16 — 20 mm	Uponor Uni-X Reno transition MLC	Uni Pipe PLUS	Drinking water, heating
Old installation (1997 to 20	20)			Fitting designation	New installation	
Pipe designation	Application	Colour	Dimension		Pipe designation	Application
Uponor MLC	Potable water, heating	White	14 — 32 mm	C. C	Uni Pipe PLUS	Drinking water, heating
				S-Press PLUS, S-Press, RTM, Uni-X, Uni-C		

18 Calculation/assembly times

The ancillary services listed above should appear as separate items in the tender. The assembly times listed below are based on practical values from experienced Uponor users. Furthermore, calculation practices in Germany vary greatly from state to state and from region to region. As a result, the following assembly times can only be an approximate calculation basis. More detailed figures can be obtained from the relevant trade associations, which have extensive data at their disposal.

All information must be checked for correctness by the executing engineer/installer before use in business transactions. Uponor accepts no liability for the correctness of the information values and for any consequential damage which may arise and/or may arise as a result of incorrect guideline values, unless the values were specified by Uponor or its vicarious agents with gross negligence or willful misconduct.

The assembly times include the performance of two persons and are specified in group minutes.

The task of costing is to determine the costs of construction services in order to prepare a quotation. This is based on a list of services which describes the construction work to be carried out in detail. The general conditions for the calculation can be found in the current VOB Part C (DIN 18381).

The assembly times in the table below include the following work:

- Ready tools and aids at the construction site
- Read plans
- Calibrate pipe routing
- Measuring, marking, cutting to length, deburring and cleaning pipes
- Assemble pipes, including Fastening
- Pressing

The following ancillary services are not included in these assembly times:

- · Preparation of assembly plans
- Setting up and clearing the construction site
- Day labour
- Insulation work
- Pressure test
- Construction inspection
- Creating the measurement

18.1 Assembly time per running meter or fitting

Assembly time in group minutes (2 fitters) per running meter or fitting.

Pipe OD × s [mm]	Pipe in protective tube	Pre-insulated pipe	Pipe as bar	Fitting connections	Angles, couplings, reductions	T-joints	Threaded connections
14 × 2.0	3.0	3.0	_	3.5	1.0	1.5	1.5
16 x 2.0	3.0	3.0	5.5	3.5	1.0	1.5	1.5
20 x 2.25	3.5	3.5	6.0	3.5	1.0	1.5	2.0
25 x 2.5	5.0	_	7.0	_	1.5	2.0	2.0
32 x 3.0	6.0	_	8.5	_	2.0	2.5	2.0
40 x 4.0	_	_	8.5	_	3.0	3.5	2.5
50 x 4.5	—	—	10.0	_	3.5	4.0	3.0
63 x 6.0	_	_	12.0	—		—	—
75 x 7.5	—	_	12.0	—		—	_
90 x 8.5	—	_	13.0	—	_	_	_
110 x 10			13.0	_	_	_	_

18.2 Assembly time per modular Uponor RS fitting

Assembly time in group minutes (2 fitters) per modular Uponor RS fitting.

Base body dimension	Press adapter	Thread adapter	T-piece	Elbow/ coupling
RS 2	1.5	2.5	1.0	0.5
RS 3	1.5	3.0	1.0	5

Source: Survey of Uponor manufacturing companies

19 Risk of mixed installation

	Note		
	Uponor Declaration of Warranty:		
	To get the registration form, please contact the local Uponor unit.		
	Note		
	Components from the different Uponor systems may only be mixed with one another if Uponor expressly indicates this option.		

Opinions and interpretations vary relating to mixed installations and different information exists in the marketplace regarding unrestricted compatibility with our products, so, as a precautionary measure, the company states the following: the company offers no guarantee regarding the compatibility of the relevant third party products with our products.

Documention available to Uponor from dealers/third-party manufacturers state that it is not apparent that the compatibility claimed by them is covered by a full warranty.

In cases of mixed installations, the 10-year Uponor Declaration of Warranty will not generally be issued for Uponor components. The legal warranty period will still apply.

19.1 Installation configurations

Note

In a mixed installation, the warranty provided by the pipe manufacturer only covers the pipe while the warranty provided by the fitting manufacturer only covers the fitting. Neither warranty covers the connection point nor do they cover the system in its entirety. This responsibility is borne solely by the installer.

Pipe		Fittings and tools		Manufacturer's system approval
RYSSICSZ	+	RF000023	=	
Uponor MLC and Uni Pipe PLUS		Uponor fitting with Uponor press jaws		Yes
RP000222	+	6000224	=	X
Uponor MLC and Uni Pipe PLUS		Fitting from a third party manufacturer		No
R400025	+	RP000227	=	×
Multi-layer composite pipe from third party manufacturer		Uponor fitting		No

Uponor Corporation

Äyritie 20 01510 Vantaa, Finland

1119966 v1_12_2020_EN Production: Uponor/ELO/ALO Uponor reserves the right to make changes, without prior notification, to the specification of incorporated components in line with its policy of continuous improvement and development.

www.uponor.com